Abstract Upon its mucosal transmission, human immunodeficiency virus type 1 (HIV-1) rapidly targets resident antigen-presenting Langerhans cells (LCs) in genital epithelia, which subsequently trans-infect CD4+ T-cells. We previously described an inhibitory neuro-immune sensory mucosal crosstalk, whereby peripheral pain-sensing nociceptor neurons, innervating all mucosal epithelia and associating with LCs, secret the neuropeptide calcitonin gene-related peptide (CGRP) that strongly inhibits HIV-1 trans-infection. Moreover, we reported that LCs secret low levels of CGRP that are further increased by CGRP itself via an autocrine/paracrine mechanism. As nociceptors secret CGRP following activation of their Ca 2+ ion channel transient receptor potential vanilloid 1 (TRPV1), we investigated whether LCs also express functional TRPV1. We found that human LCs expressed TRPV1 mRNA and protein. TRPV1 in LCs was functional, as the TRPV1 agonists capsaicin (CP) and resiniferatoxin (RTX) induced Ca 2+ influx in a dose-dependent manner. Treatment of LCs with CP and the TRPV1 agonist rutaecarpine (Rut) increased CGRP secretion, reaching concentrations close to its IC 50 for inhibition of HIV-1 trans-infection. Accordingly, CP significantly inhibited HIV-1 trans-infection, which was abrogated by antagonists of both TRPV1 and the CGRP receptor. Finally, pre-treatment of inner foreskin tissue explants with CP markedly increased CGRP secretion, and upon subsequent polarized exposure to HIV-1, inhibited increase in LC-T-cell conjugate formation and T-cell infection. Together, our results reveal that alike nociceptors, LCs express functional TRPV1, whose activation induces CGRP secretion that inhibits mucosal HIV-1 transmission. Our studies could permit re-positioning of formulations containing TRPV1 agonists, already approved for pain relief, as novel topical microbicides against HIV-1. Significance Statement Upon its sexual transmission, HIV-1 targets different types of mucosal immune cells, such as antigen-presenting Langerhans cells (LCs). In turn, LCs transfer HIV-1 to its principal cellular targets, namely CD4+ T-cells, in a process termed trans-infection. We previously discovered that the mucosal neuropeptide CGRP strongly inhibits trans-infection. CGRP is principally secreted from pain-sensing peripheral neurons termed nociceptors, once activated via their TRPV1 ion channel. Herein, we reveal that LCs also express functional TRPV1, whose activation induces secretion of CGRP that inhibits mucosal HIV-1 transmission. Accordingly, molecules activating TRPV1 and inducing CGRP secretion could be used to prevent mucosal HIV-1 transmission. This approach represents an original neuro-immune strategy to fight HIV-1.