VK
Valerie Kuan
Author with expertise in Molecular Mechanisms of Aging and Longevity
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
230
h-index:
15
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A chronological map of 308 physical and mental health conditions from 4 million individuals in the English National Health Service

Valerie Kuan et al.May 20, 2019
BackgroundTo effectively prevent, detect, and treat health conditions that affect people during their lifecourse, health-care professionals and researchers need to know which sections of the population are susceptible to which health conditions and at which ages. Hence, we aimed to map the course of human health by identifying the 50 most common health conditions in each decade of life and estimating the median age at first diagnosis.MethodsWe developed phenotyping algorithms and codelists for physical and mental health conditions that involve intensive use of health-care resources. Individuals older than 1 year were included in the study if their primary-care and hospital-admission records met research standards set by the Clinical Practice Research Datalink and they had been registered in a general practice in England contributing up-to-standard data for at least 1 year during the study period. We used linked records of individuals from the CALIBER platform to calculate the sex-standardised cumulative incidence for these conditions by 10-year age groups between April 1, 2010, and March 31, 2015. We also derived the median age at diagnosis and prevalence estimates stratified by age, sex, and ethnicity (black, white, south Asian) over the study period from the primary-care and secondary-care records of patients.FindingsWe developed case definitions for 308 disease phenotypes. We used records of 2 784 138 patients for the calculation of cumulative incidence and of 3 872 451 patients for the calculation of period prevalence and median age at diagnosis of these conditions. Conditions that first gained prominence at key stages of life were: atopic conditions and infections that led to hospital admission in children (<10 years); acne and menstrual disorders in the teenage years (10–19 years); mental health conditions, obesity, and migraine in individuals aged 20–29 years; soft-tissue disorders and gastro-oesophageal reflux disease in individuals aged 30–39 years; dyslipidaemia, hypertension, and erectile dysfunction in individuals aged 40–59 years; cancer, osteoarthritis, benign prostatic hyperplasia, cataract, diverticular disease, type 2 diabetes, and deafness in individuals aged 60–79 years; and atrial fibrillation, dementia, acute and chronic kidney disease, heart failure, ischaemic heart disease, anaemia, and osteoporosis in individuals aged 80 years or older. Black or south-Asian individuals were diagnosed earlier than white individuals for 258 (84%) of the 308 conditions. Bone fractures and atopic conditions were recorded earlier in male individuals, whereas female individuals were diagnosed at younger ages with nutritional anaemias, tubulointerstitial nephritis, and urinary disorders.InterpretationWe have produced the first chronological map of human health with cumulative-incidence and period-prevalence estimates for multiple morbidities in parallel from birth to advanced age. This can guide clinicians, policy makers, and researchers on how to formulate differential diagnoses, allocate resources, and target research priorities on the basis of the knowledge of who gets which diseases when. We have published our phenotyping algorithms on the CALIBER open-access Portal which will facilitate future research by providing a curated list of reusable case definitions.FundingWellcome Trust, National Institute for Health Research, Medical Research Council, Arthritis Research UK, British Heart Foundation, Cancer Research UK, Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Department of Health and Social Care (England), Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), Economic and Social Research Council, Engineering and Physical Sciences Research Council, National Institute for Social Care and Health Research, and The Alan Turing Institute.
1

Biological mechanisms of aging predict age-related disease multimorbidities in patients

Helen Fraser et al.May 5, 2021
Abstract Genetic, environmental and pharmacological interventions into the aging process can confer resistance to a multiple age-related diseases in laboratory animals, including rhesus monkeys. These findings imply that mechanisms of aging might contribute to patterns of multimorbidity in humans, and hence could be targeted to prevent multiple conditions simultaneously. To address this question, we text mined 917,645 literature abstracts followed by manual curation, and found strong, non-random associations between age-related diseases and aging mechanisms, confirmed by gene set enrichment analysis of GWAS data. Integration of these associations with clinical data from 3.01 million patients showed that age-related diseases associated with each of five aging mechanisms were more likely than chance to be present together in patients. Genetic evidence revealed that innate and adaptive immunity, the intrinsic apoptotic signalling pathway and activity of the ERK1/2 pathway played a significant role across multiple aging mechanisms and multiple, diverse age-related diseases. Mechanisms of aging therefore contribute to multiple age-related diseases and to patterns of human age-related multimorbidity, and could potentially be targeted to prevent more than one age-related condition in the same patient.
1
Citation1
0
Save
0

UK phenomics platform for developing and validating EHR phenotypes: CALIBER

Spiros Denaxas et al.Feb 4, 2019
Objective Electronic Health Records (EHR) are a rich source of information on human diseases, but the information is variably structured, fragmented, curated using different coding systems and collected for purposes other than medical research. We describe an approach for developing, validating and sharing reproducible phenotypes from national structured EHR in the United Kingdom (UK) with applications for translational research.Materials and Methods We implemented a rule-based phenotyping framework, with up to six approaches of validation. We applied our framework to a sample of 15 million individuals in a national EHR data source (population-based primary care, all ages) linked to hospitalization and death records in England. Data comprised continuous measurements e.g. blood pressure, medication information and coded diagnoses, symptoms, procedures and referrals, recorded using five controlled clinical terminologies: a) Read (primary care, subset of SNOMED-CT), b) International Classification of Diseases 9th/10th Revision (ICD-9, ICD-10, secondary care diagnoses and cause of mortality), c) OPCS Classification of Interventions and Procedures (OPCS-4, hospital surgical procedures), and d) DM+D prescription codes.Results Using the CALIBER phenotyping framework, we created algorithms for 51 diseases, syndromes, biomarkers and lifestyle risk factors and provide up to six validation approaches. The EHR phenotypes are curated in the open-access CALIBER Portal ( ) and have been used by 40 national/international research groups in 60 peer-reviewed publications.Conclusion We describe a UK EHR phenomics approach within the CALIBER EHR data platform with initial evidence of validity and use, as an important step towards international use of UK EHR data for health research.