EY
Ellen Yoshihara
Author with expertise in Pancreatic Islet Dysfunction and Regeneration
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
2,400
h-index:
23
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Immune-evasive human islet-like organoids ameliorate diabetes

Ellen Yoshihara et al.Aug 19, 2020
Islets derived from stem cells hold promise as a therapy for insulin-dependent diabetes, but there remain challenges towards achieving this goal1–6. Here we generate human islet-like organoids (HILOs) from induced pluripotent stem cells and show that non-canonical WNT4 signalling drives the metabolic maturation necessary for robust ex vivo glucose-stimulated insulin secretion. These functionally mature HILOs contain endocrine-like cell types that, upon transplantation, rapidly re-establish glucose homeostasis in diabetic NOD/SCID mice. Overexpression of the immune checkpoint protein programmed death-ligand 1 (PD-L1) protected HILO xenografts such that they were able to restore glucose homeostasis in immune-competent diabetic mice for 50 days. Furthermore, ex vivo stimulation with interferon-γ induced endogenous PD-L1 expression and restricted T cell activation and graft rejection. The generation of glucose-responsive islet-like organoids that are able to avoid immune detection provides a promising alternative to cadaveric and device-dependent therapies in the treatment of diabetes. Metabolically-mature human islet-like organoids generated from induced pluripotent stem cells are able to recapitulate insulin-responsive pancreatic islet function and avoid immunologic cell death in diabetic mouse transplantation models.
0
Citation239
0
Save
0

Insulin reduces endoplasmic reticulum stress‐induced apoptosis by decreasing mitochondrial hyperpolarization and caspase‐12 in INS‐1 pancreatic β‐cells

Nanako Murata et al.Jun 1, 2024
Pancreatic β-cell mass is a critical determinant of insulin secretion. Severe endoplasmic reticulum (ER) stress causes β-cell apoptosis; however, the mechanisms of progression and suppression are not yet fully understood. Here, we report that the autocrine/paracrine function of insulin reduces ER stress-induced β-cell apoptosis. Insulin reduced the ER-stress inducer tunicamycin- and thapsigargin-induced cell viability loss due to apoptosis in INS-1 β-cells. Moreover, the effect of insulin was greater than that of insulin-like growth factor-1 at physiologically relevant concentrations. Insulin did not attenuate the ER stress-induced increase in unfolded protein response genes. ER stress did not induce cytochrome c release from mitochondria. Mitochondrial hyperpolarization was induced by ER stress and prevented by insulin. The protonophore/mitochondrial oxidative phosphorylation uncoupler, but not the antioxidants N-acetylcysteine and α-tocopherol, exhibited potential cytoprotection during ER stress. Both procaspase-12 and cleaved caspase-12 levels increased under ER stress. The caspase-12 inhibitor Z-ATAD-FMK decreased ER stress-induced apoptosis. Caspase-12 overexpression reduced cell viability, which was diminished in the presence of insulin. Insulin decreased caspase-12 levels at the post-translational stages. These results demonstrate that insulin protects against ER stress-induced β-cell apoptosis in this cell line. Furthermore, mitochondrial hyperpolarization and increased caspase-12 levels are involved in ER stress-induced and insulin-suppressed β-cell apoptosis.