Telomere dysfunction activates p53-mediated cellular growth arrest, senescence and apoptosis to drive progressive atrophy and functional decline in high-turnover tissues. The broader adverse impact of telomere dysfunction across many tissues including more quiescent systems prompted transcriptomic network analyses to identify common mechanisms operative in haematopoietic stem cells, heart and liver. These unbiased studies revealed profound repression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha and beta (PGC-1α and PGC-1β, also known as Ppargc1a and Ppargc1b, respectively) and the downstream network in mice null for either telomerase reverse transcriptase (Tert) or telomerase RNA component (Terc) genes. Consistent with PGCs as master regulators of mitochondrial physiology and metabolism, telomere dysfunction is associated with impaired mitochondrial biogenesis and function, decreased gluconeogenesis, cardiomyopathy, and increased reactive oxygen species. In the setting of telomere dysfunction, enforced Tert or PGC-1α expression or germline deletion of p53 (also known as Trp53) substantially restores PGC network expression, mitochondrial respiration, cardiac function and gluconeogenesis. We demonstrate that telomere dysfunction activates p53 which in turn binds and represses PGC-1α and PGC-1β promoters, thereby forging a direct link between telomere and mitochondrial biology. We propose that this telomere–p53–PGC axis contributes to organ and metabolic failure and to diminishing organismal fitness in the setting of telomere dysfunction. The recent demonstration of a functional link between mitochondria and telomeres — the protective tips at the ends of chromosomes — raised the possibility that both may be implicated in processes related to ageing. Now an analysis of the transcriptome (the total RNA content) of haematopoietic stem cells from heart and liver tissues of mice points to the existence of a telomere-p53-PGC axis linking telomere dysfunction to compromised organ function and possibly to age-related disorders. In mice with dysfunctional telomeres, p53-mediated cellular growth arrest becomes activated, in turn repressing PGC-1α and PGC-1β, master regulators of metabolic and mitochondrial processes. This results in reduced mitochondrial mass, mitochondrial dysfunction and reduced ATP generation, impaired gluconeogenesis, cardiomyopathy and increased reactive oxygen species. Here it is shown that telomere dysfunction drives metabolic and mitochondrial compromise. Mice with dysfunctional telomeres activate p53, which in turn represses PGC-1α and PGC-1β, master regulators of metabolic and mitochondrial processes. This results in reduced mitochondrial mass, mitochondrial dysfunction and reduced ATP generation, impaired gluconeogenesis, cariomyopathy and increased reactive oxygen species. This telomere–p53–PGC pathway shows how telomere dysfunction may compromise organ function and contribute to age-related disorders.