MB
Michael Brammer
Author with expertise in Autism Spectrum Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
195
(77% Open Access)
Cited by:
31,663
h-index:
66
/
i10-index:
135
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain

Edward Bullmore et al.Jan 1, 1999
We describe almost entirely automated procedures for estimation of global, voxel, and cluster-level statistics to test the null hypothesis of zero neuroanatomical difference between two groups of structural magnetic resonance imaging (MRI) data. Theoretical distributions under the null hypothesis are available for 1) global tissue class volumes; 2) standardized linear model [analysis of variance (ANOVA and ANCOVA)] coefficients estimated at each voxel; and 3) an area of spatially connected clusters generated by applying an arbitrary threshold to a two-dimensional (2-D) map of normal statistics at voxel level. We describe novel methods for economically ascertaining probability distributions under the null hypothesis, with fewer assumptions, by permutation of the observed data. Nominal Type I error control by permutation testing is generally excellent; whereas theoretical distributions may be over conservative. Permutation has the additional advantage that it can be used to test any statistic of interest, such as the sum of suprathreshold voxel statistics in a cluster (or cluster mass), regardless of its theoretical tractability under the null hypothesis. These issues are illustrated by application to MRI data acquired from 18 adolescents with hyperkinetic disorder and 16 control subjects matched for age and gender.
0

A meta-analysis of sex differences in human brain structure

Amber Ruigrok et al.Jan 3, 2014
The prevalence, age of onset, and symptomatology of many neuropsychiatric conditions differ between males and females. To understand the causes and consequences of sex differences it is important to establish where they occur in the human brain. We report the first meta-analysis of typical sex differences on global brain volume, a descriptive account of the breakdown of studies of each compartmental volume by six age categories, and whole-brain voxel-wise meta-analyses on brain volume and density. Gaussian-process regression coordinate-based meta-analysis was used to examine sex differences in voxel-based regional volume and density. On average, males have larger total brain volumes than females. Examination of the breakdown of studies providing total volumes by age categories indicated a bias towards the 18-59 year-old category. Regional sex differences in volume and tissue density include the amygdala, hippocampus and insula, areas known to be implicated in sex-biased neuropsychiatric conditions. Together, these results suggest candidate regions for investigating the asymmetric effect that sex has on the developing brain, and for understanding sex-biased neurological and psychiatric conditions.
0

Mapping Motor Inhibition: Conjunctive Brain Activations across Different Versions of Go/No-Go and Stop Tasks

Katya Rubia et al.Feb 1, 2001
Conjunctionanalysis methods were used in functional magnetic resonance imaging to investigate brain regions commonly activated in subjects performing different versions of go/no-go and stop tasks, differing in probability of inhibitory signals and/or contrast conditions. Generic brain activation maps highlighted brain regions commonly activated in (a) two different go/no-go task versions, (b) three different stop task versions, and (c) all 5 inhibition task versions. Comparison between the generic activation maps of stop and go/no-go task versions revealed inhibitory mechanisms specific to go/no-go or stop task performance in 15 healthy, right-handed, male adults. In the go/no-go task a motor response had to be selectively executed or inhibited in either 50% or 30% of trials. In the stop task, the motor response to a go-stimulus had to be retracted on either 50 or 30% of trials, indicated by a stop signal, shortly (250 ms) following the go-stimulus. The shared “inhibitory” neurocognitive network by all inhibition tasks comprised mesial, medial, and inferior frontal and parietal cortices. Generic activation of the go/no-go task versions identified bilateral, but more predominantly left hemispheric mesial, medial, and inferior frontal and parietal cortices. Common activation to all stop task versions was in predominantly right hemispheric anterior cingulate, supplementary motor area, inferior prefrontal, and parietal cortices. On direct comparison between generic stop and go/no-go activation maps increased BOLD signal was observed in left hemispheric dorsolateral prefrontal, medial, and parietal cortices during the go/no-go task, presumably reflectinga left frontoparietal specialization for response selection.
0

Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex

Gemma Calvert et al.Jun 1, 2000
Background: Integrating information from the different senses markedly enhances the detection and identification of external stimuli. Compared with unimodal inputs, semantically and/or spatially congruent multisensory cues speed discrimination and improve reaction times. Discordant inputs have the opposite effect, reducing performance and slowing responses. These behavioural features of crossmodal processing appear to have parallels in the response properties of multisensory cells in the superior colliculi and cerebral cortex of non-human mammals. Although spatially concordant multisensory inputs can produce a dramatic, often multiplicative, increase in cellular activity, spatially disparate cues tend to induce a profound response depression.Results: Using functional magnetic resonance imaging (fMRI), we investigated whether similar indices of crossmodal integration are detectable in human cerebral cortex, and for the synthesis of complex inputs relating to stimulus identity. Ten human subjects were exposed to varying epochs of semantically congruent and incongruent audio-visual speech and to each modality in isolation. Brain activations to matched and mismatched audio-visual inputs were contrasted with the combined response to both unimodal conditions. This strategy identified an area of heteromodal cortex in the left superior temporal sulcus that exhibited significant supra-additive response enhancement to matched audio-visual inputs and a corresponding sub-additive response to mismatched inputs.Conclusions: The data provide fMRI evidence of crossmodal binding by convergence in the human heteromodal cortex. They further suggest that response enhancement and depression may be a general property of multisensory integration operating at different levels of the neuroaxis and irrespective of the purpose for which sensory inputs are combined.
0

Neural responses to facial and vocal expressions of fear and disgust

M.L. Phillips et al.Oct 7, 1998
Neuropsychological studies report more impaired responses to facial expressions of fear than disgust in people with amygdala lesions, and vice versa in people with Huntington's disease. Experiments using functional magnetic resonance imaging (fMRI) have confirmed the role of the amygdala in the response to fearful faces and have implicated the anterior insula in the response to facial expressions of disgust. We used fMRI to extend these studies to the perception of fear and disgust from both facial and vocal expressions. Consistent with neuropsychological findings, both types of fearful stimuli activated the amygdala. Facial expressions of disgust activated the anterior insula and the caudate-putamen; vocal expressions of disgust did not significantly activate either of these regions. All four types of stimuli activated the superior temporal gyrus. Our findings therefore (i) support the differential localization of the neural substrates of fear and disgust; (ii) confirm the involvement of the amygdala in the emotion of fear, whether evoked by facial or vocal expressions; (iii) confirm the involvement of the anterior insula and the striatum in reactions to facial expressions of disgust; and (iv) suggest a possible general role for the perception of emotional expressions for the superior temporal gyrus.
Load More