Abstract The recording instability of neural implants due to neuroinflammation at the device-tissue interface (DTI) is a primary roadblock to broad adoption of brain-machine interfaces. While a multiphasic immune response, marked by glial scaring, oxidative stress (OS), and neurodegeneration, is well-characterized, the independent contributions of systemic and local “innate” immune responses are not well-understood. Three-dimensional primary neural cultures provide a unique environment for studying the drivers of neuroinflammation by decoupling the innate and systemic immune systems, while conserving an endogenous extracellular matrix and structural and functional network complexity. We created a three-dimensional in vitro model of the DTI by seeding primary cortical cells around microwires. Live imaging of microtissues over time revealed independent innate neuroinflammation, marked by increased OS, decreased neuronal density, and increased functional connectivity. We demonstrated the use of this model for therapeutic screening by directly applying drugs to neural tissue, bypassing low bioavailability through the in vivo blood brain barrier. As there is growing interest in long-acting antioxidant therapies, we tested efficacy of “perpetual” antioxidant ceria nanoparticles, which reduced OS, increased neuronal density, and protected functional connectivity. Overall, our avascular in vitro model of the DTI exhibited symptoms of OS-mediated innate neuroinflammation which were mitigated by antioxidant intervention.