MP
Marco Pepe
Author with expertise in Molecular Mechanisms of Plant Development and Regulation
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
2
h-index:
13
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Comparative analysis of machine learning and evolutionary optimization algorithms for precision tissue culture ofCannabis sativa: Prediction and validation ofin vitroshoot growth and development based on the optimization of light and carbohydrate sources

Marco Pepe et al.Aug 10, 2021
Abstract Micropropagation techniques offer opportunity to proliferate, maintain, and study dynamic plant responses in highly controlled environments without confounding external influences, forming the basis for many biotechnological applications. With medicinal and recreational interests for Cannabis sativa L. growing, research related to the optimization of in vitro practices is needed to improve current methods while boosting our understanding of the underlying physiological processes. Unfortunately, due to the exorbitantly large array of factors influencing tissue culture, existing approaches to optimize in vitro methods are tedious and time-consuming. Therefore, there is great potential to use new computational methodologies for analysing data to develop improved protocols more efficiently. Here, we first tested the effects of light qualities using assorted combinations of Red, Blue, Far Red, and White spanning 0-100 μmol/m 2 /s in combination with sucrose concentrations ranging from 1-6 % (w/v), totaling 66 treatments, on in vitro shoot growth, root development, number of nodes, shoot emergence, and canopy surface area. Collected data were then assessed using multilayer perceptron (MLP), generalized regression neural network (GRNN), and adaptive neuro-fuzzy inference system (ANFIS) to model and predict in vitro Cannabis growth and development. Based on the results, GRNN had better performance than MLP or ANFIS and was consequently selected to link different optimization algorithms (genetic algorithm, biogeography-based optimization, interior search algorithm, and symbiotic organisms search) for prediction of optimal light levels (quality/intensity) and sucrose concentration for various applications. Predictions of in vitro conditions to refine growth responses were subsequently tested in a validation experiment and data showed no significant differences between predicted optimized values and observed data. Thus, this study demonstrates the potential of machine learning and optimization algorithms to predict the most favourable light combinations and sucrose levels to elicit specific developmental responses. Based on these, recommendations of light and carbohydrate levels to promote specific developmental outcomes for in vitro Cannabis are suggested. Ultimately, this work showcases the importance of light quality and carbohydrate supply in directing plant development as well as the power of machine learning approaches to investigate complex interactions in plant tissue culture.