Abstract NFE2L1 (also called Nrf1) acts a core regulator of redox signaling and metabolism homeostasis, and thus its dysfunction results in multiple systemic metabolic diseases. However, the molecular mechanism(s) by which NFE2L1 regulates glycose and lipid metabolism is still elusive. Here, we found that the loss of NFE2L1 in human HepG2 cells led to a lethal phenotype upon glucose deprivation. The uptake of glucose was also affected by NFE2L1 deficiency. Further experiments unveiled that although the glycosylation of NFE2L1 was monitored through the glycolysis pathway, it enabled to sense the energy state and directly interacted with AMPK. These indicate that NFE2L1 can serve as a dual sensor and regulator of glucose homeostasis. In-depth sights into transcriptome, metabolome and seahorse data further unraveled that glucose metabolism was reprogrammed by disruption of NFE2L1, so as to aggravate the Warburg effect in NFE2L1-silenced hepatoma cells, along with the mitochondrial damage observed under the electron microscope. Collectively, these demonstrate that disfunction of NFE2L1 triggers the uncontrollable signaling by AMPK towards glucose metabolism reprogramming in the liver cancer development.