KP
Kristina Põšnograjeva
Author with expertise in Integrin Signaling in Inflammation and Cancer
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
13
h-index:
5
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

PL1 Peptide Engages Acidic Surfaces on Tumor-Associated Fibronectin and Tenascin Isoforms to Trigger Cellular Uptake

Prakash Lingasamy et al.Nov 24, 2021
Tumor extracellular matrix (ECM) is a high-capacity target for the precision delivery of affinity ligand-guided drugs and imaging agents. Recently, we developed a PL1 peptide (sequence: PPRRGLIKLKTS) for systemic targeting of malignant ECM. Here, we map the dynamics of PL1 binding to its receptors Fibronectin Extra Domain B (FN-EDB) and Tenascin C C-isoform (TNC-C) by computational modeling and cell-free binding studies on mutated receptor proteins, and study cellular binding and internalization of PL1 nanoparticles in cultured cells. Molecular dynamics simulation and docking analysis suggested that the engagement of PL1 peptide with both receptors is primarily driven by electrostatic interactions. Substituting acidic amino acid residues with neutral amino acids at predicted PL1 binding sites in FN-EDB (D52N-D49N-D12N) and TNC-C (D39N-D45N) resulted in the loss of binding of PL1 nanoparticles. Remarkably, PL1-functionalized nanoparticles (NPs) were not only deposited on the target ECM but bound the cells and initiated a robust cellular uptake via a pathway resembling macropinocytosis. Our studies establish the mode of engagement of the PL1 peptide with its receptors and suggest applications for intracellular delivery of nanoscale payloads. The outcomes of this work can be used for the development of PL1-derived peptides with improved stability, affinity, and specificity for precision targeting of the tumor ECM and malignant cells.
1
Citation9
0
Save
1

PL1 Peptide Engages Acidic Surfaces on Tumor-Associated Fibronectin and Tenascin Isoforms to Trigger Cellular Uptake

Prakash Lingasamy et al.Sep 16, 2021
Abstract Tumor extracellular matrix (ECM) is a high-capacity and genetically stable target for the precision delivery of affinity ligand-guided drugs and imaging agents. Recently, we developed a PL1 peptide (sequence: PPRRGLIKLKTS) for systemic targeting of malignant ECM. Here we map the dynamics of PL1 binding to its receptors Fibronectin Extra Domain B (FN-EDB) and Tenascin C C-isoform (TNC-C) by computational modeling and cell-free binding studies on mutated receptor proteins, and study cellular binding and internalization of PL1 nanoparticles in cultured cells. Molecular dynamics simulation and docking analysis suggested that the engagement of PL1 peptide with both receptors is primarily driven by electrostatic interactions. Substituting acidic amino acid residues with neutral amino acids at predicted PL1 binding sites in FN-EDB (D52N-D49N-D12N) and TNC-C (D39N-D45N) resulted in the loss of binding of PL1 nanoparticles. Remarkably, PL1-functionalized nanoparticles (NPs) were not only deposited on the target ECM but bound the cells and initiated a robust cellular uptake via a pathway resembling macropinocytosis. Our studies establish the mode of engagement of the PL1 peptide with its receptors and suggest applications for intracellular delivery of nanoscale payloads. The outcomes of this work can be used for the development of PL1-derived peptides with improved stability, affinity and specificity for precision targeting of the tumor ECM and malignant cells. One Sentence Summary PL1 peptide is recruited to the acidic surfaces on oncofetal fibronectin EDB and tenascin C-C isoform, triggering cellular uptake of PL1-functionalized nanoparticles.
1
Citation3
0
Save
2

In vivophage display: identification of organ-specific peptides using deep sequencing and differential profiling across tissues

Kārlis Pleiko et al.Jul 2, 2020
ABSTRACT In vivo phage display is widely used for identification of organ- or disease-specific homing peptides. However, the current in vivo phage biopanning approaches fail to assess biodistribution of specific peptide phages across tissues during the screen, thus necessitating laborious and time-consuming post-screening validation studies on individual peptide phages. Here, we adopted bioinformatics tools used for RNA sequencing for analysis of high throughput sequencing (HTS) data to estimate the representation of individual peptides during biopanning in vivo . The data from in vivo phage screen were analyzed using differential binding – relative representation of each peptide in the target organ vs. in a panel of control organs. Application of this approach in a model study using low-diversity peptide T7 phage library with spiked-in brain homing phage, demonstrated brain-specific differential binding of brain homing phage and resulted in identification of novel lung and brain specific homing peptides. Our study provides a broadly applicable approach to streamline in vivo peptide phage biopanning and to increase its reproducibility and success rate. Graphic abstract In vivo phage display using differential binding approach
2
Citation1
0
Save
0

Protease-activated CendR peptides targeting tenascin-C: mitigating off-target tissue accumulation

Allan Tobi et al.Jul 16, 2024
To achieve precision and selectivity, anticancer compounds and nanoparticles (NPs) can be targeted with affinity ligands that engage with malignancy-associated molecules in the blood vessels. While tumor-penetrating C-end Rule (CendR) peptides hold promise for precision tumor delivery, C-terminally exposed CendR peptides can accumulate undesirably in non-malignant tissues expressing neuropilin-1 (NRP-1), such as the lungs. One example of such promiscuous peptides is PL3 (sequence: AGRGRLVR), a peptide that engages with NRP-1 through its C-terminal CendR element, RLVR.Here, we report the development of PL3 derivatives that bind to NRP-1 only after proteolytic processing by urokinase-type plasminogen activator (uPA), while maintaining binding to the other receptor of the peptide, the C-domain of tenascin-C (TNC-C). Through a rational design approach and screening of a uPA-treated peptide-phage library (PL3 peptide followed by four random amino acids) on the recombinant NRP-1, derivatives of the PL3 peptide capable of binding to NRP-1 only post-uPA processing were successfully identified. In vitro cleavage, binding, and internalization assays, along with in vivo biodistribution studies in orthotopic glioblastoma-bearing mice, confirmed the efficacy of two novel peptides, PL3uCendR (AGRGRLVR↓SAGGSVA) and SKLG (AGRGRLVR↓SKLG), which exhibit uPA-dependent binding to NRP-1, reducing off-target binding to healthy NRP-1-expressing tissues. Our study not only unveils novel uPA-dependent TNC-C targeting CendR peptides but also introduces a broader paradigm and establishes a technology for screening proteolytically activated tumor-penetrating peptides.
0

A Cyclic Peptide Targets Glioblastoma by Binding to Aberrantly Exposed SNAP25

Alberto Arias et al.Nov 22, 2024
Disease-specific changes in tumors and other diseased tissues are an important target of research because they provide clues about the pathophysiology of the disease as well as uncover potentially useful markers for diagnosis and treatment. Here, we report a new cyclic peptide, CESPLLSEC (CES), that specifically accumulated (homed) in intracranial U87MG and the WT-GBM model of glioblastoma (GBM) from intravenous (IV) injection, and associated with the vasculature. Affinity chromatography of U87MG tumor extracts on insolubilized CES peptide identified Synaptosomal Associated Protein 25 (SNAP25) as a candidate target molecule (receptor) for CES. Several results supported the identification of SNAP25 as the CES receptor. IV-injected FAM-CES colocalized with SNAP25 in the tumors, and direct binding studies showed specific binding of the CES peptide to recombinant human SNAP25. A CES peptide–drug conjugate designed for photodynamic therapy showed selective cytotoxicity to SNAP25+ glioblastoma cell lines. Specific accumulation of systemically injected anti-SNAP25 antibody in U87MG glioblastoma and labeling of intact U87MG cells with anti-SNAP in flow cytometry showed that SNAP25 is available from the circulation but not in normal tissues and that it is present at the cell surface. Using an array of ECM proteins and surface plasmon resonance revealed that SNAP25 binds moderately to collagen V and strongly to collagen VI. Modeling studies suggested that CES and collagen VI compete for the same binding site on SNAP25. Our results introduce CES as a valuable targeting peptide for drug delivery and its receptor SNAP25 as a possible molecular marker of interest for glioblastoma.