ABSTRACT Desminopathy the most common intermediate filament disease in humans. Desmin is an essential part of the filamentous network that aligns myofibrils, anchors nuclei and mitochondria, and connects the z-discs and the sarcolemma. We created a rat model with a mutation in R349P DES , analog to the most frequent R350P DES missense mutation in humans. To examine the effects of a chronic, physiological exercise stimulus on desminopathic muscle, we subjected R349P DES rats and their wildtype (WT) and heterozygous littermates to a treadmill running regime. We saw significantly lower running capacity in DES rats that worsened over the course of the study. We found indicators of increased autophagic and proteasome activity with running in DES compared to WT. Stable isotope labeling and LC-MS analysis displayed distinct adaptations of the proteomes of WT and DES animals at baseline as well as with exercise: While key proteins of glycolysis, mitochondria and thick filaments increased their synthetic activity with running in WT, these proteins were higher at baseline in DES and did not change with running. The results suggest an impairment in adaption to chronic exercise in DES muscle and a subsequent exacerbation in the functional and histopathological phenotype.