YW
Yinhai Wang
Author with expertise in Modeling and Control of Traffic Flow Systems
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
18
(33% Open Access)
Cited by:
6,359
h-index:
60
/
i10-index:
248
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting

Zhiyong Cui et al.Nov 28, 2019
Traffic forecasting is a particularly challenging application of spatiotemporal forecasting, due to the time-varying traffic patterns and the complicated spatial dependencies on road networks. To address this challenge, we learn the traffic network as a graph and propose a novel deep learning framework, Traffic Graph Convolutional Long Short-Term Memory Neural Network (TGC-LSTM), to learn the interactions between roadways in the traffic network and forecast the network-wide traffic state. We define the traffic graph convolution based on the physical network topology. The relationship between the proposed traffic graph convolution and the spectral graph convolution is also discussed. An L1-norm on graph convolution weights and an L2-norm on graph convolution features are added to the model's loss function to enhance the interpretability of the proposed model. Experimental results show that the proposed model outperforms baseline methods on two real-world traffic state datasets. The visualization of the graph convolution weights indicates that the proposed framework can recognize the most influential road segments in real-world traffic networks.
0

Mining smart card data for transit riders’ travel patterns

Xiaolei Ma et al.Aug 24, 2013
To mitigate the congestion caused by the ever increasing number of privately owned automobiles, public transit is highly promoted by transportation agencies worldwide. A better understanding of travel patterns and regularity at the “magnitude” level will enable transit authorities to evaluate the services they offer, adjust marketing strategies, retain loyal customers and improve overall transit performance. However, it is fairly challenging to identify travel patterns for individual transit riders in a large dataset. This paper proposes an efficient and effective data-mining procedure that models the travel patterns of transit riders in Beijing, China. Transit riders’ trip chains are identified based on the temporal and spatial characteristics of their smart card transaction data. The Density-based Spatial Clustering of Applications with Noise (DBSCAN) algorithm then analyzes the identified trip chains to detect transit riders’ historical travel patterns and the K-Means++ clustering algorithm and the rough-set theory are jointly applied to cluster and classify travel pattern regularities. The performance of the rough-set-based algorithm is compared with those of other prevailing classification algorithms. The results indicate that the proposed rough-set-based algorithm outperforms other commonly used data-mining algorithms in terms of accuracy and efficiency.
0

Large-Scale Transportation Network Congestion Evolution Prediction Using Deep Learning Theory

Xiaolei Ma et al.Mar 17, 2015
Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS) and Internet of Things (IoT), transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS) data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU)-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation.
0

Human-like autonomous car-following model with deep reinforcement learning

Meixin Zhu et al.Nov 11, 2018
This study proposes a framework for human-like autonomous car-following planning based on deep reinforcement learning (deep RL). Historical driving data are fed into a simulation environment where an RL agent learns from trial and error interactions based on a reward function that signals how much the agent deviates from the empirical data. Through these interactions, an optimal policy, or car-following model that maps in a human-like way from speed, relative speed between a lead and following vehicle, and inter-vehicle spacing to acceleration of a following vehicle is finally obtained. The model can be continuously updated when more data are fed in. Two thousand car-following periods extracted from the 2015 Shanghai Naturalistic Driving Study were used to train the model and compare its performance with that of traditional and recent data-driven car-following models. As shown by this study’s results, a deep deterministic policy gradient car-following model that uses disparity between simulated and observed speed as the reward function and considers a reaction delay of 1 s, denoted as DDPGvRT, can reproduce human-like car-following behavior with higher accuracy than traditional and recent data-driven car-following models. Specifically, the DDPGvRT model has a spacing validation error of 18% and speed validation error of 5%, which are less than those of other models, including the intelligent driver model, models based on locally weighted regression, and conventional neural network-based models. Moreover, the DDPGvRT demonstrates good capability of generalization to various driving situations and can adapt to different drivers by continuously learning. This study demonstrates that reinforcement learning methodology can offer insight into driver behavior and can contribute to the development of human-like autonomous driving algorithms and traffic-flow models.
0

An Improved Fuzzy Neural Network for Traffic Speed Prediction Considering Periodic Characteristic

Jinjun Tang et al.Jan 17, 2017
This paper proposes a new method in construction fuzzy neural network to forecast travel speed for multi-step ahead based on 2-min travel speed data collected from three remote traffic microwave sensors located on a southbound segment of a fourth ring road in Beijing City. The first-order Takagi-Sugeno system is used to complete the fuzzy inference. To train the evolving fuzzy neural network (EFNN), two learning processes are proposed. First, a K-means method is employed to partition input samples into different clusters and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated. Second, a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Furthermore, a trigonometric regression function is introduced to capture the periodic component in the raw speed data. Specifically, the predicted performance between the proposed model and six traditional models are compared, which are artificial neural network, support vector machine, autoregressive integrated moving average model, and vector autoregressive model. The results suggest that the prediction performances of EFNN are better than those of traditional models due to their strong learning ability. As the prediction time step increases, the EFNN model can consider the periodic pattern and demonstrate advantages over other models with smaller predicted errors and slow raising rate of errors.
0

Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values

Zhiyong Cui et al.Jul 10, 2020
Short-term traffic forecasting based on deep learning methods, especially recurrent neural networks (RNN), has received much attention in recent years. However, the potential of RNN-based models in traffic forecasting has not yet been fully exploited in terms of the predictive power of spatial–temporal data and the capability of handling missing data. In this paper, we focus on RNN-based models and attempt to reformulate the way to incorporate RNN and its variants into traffic prediction models. A stacked bidirectional and unidirectional LSTM network architecture (SBU-LSTM) is proposed to assist the design of neural network structures for traffic state forecasting. As a key component of the architecture, the bidirectional LSTM (BDLSM) is exploited to capture the forward and backward temporal dependencies in spatiotemporal data. To deal with missing values in spatial–temporal data, we also propose a data imputation mechanism in the LSTM structure (LSTM-I) by designing an imputation unit to infer missing values and assist traffic prediction. The bidirectional version of LSTM-I is incorporated in the SBU-LSTM architecture. Two real-world network-wide traffic state datasets are used to conduct experiments and published to facilitate further traffic prediction research. The prediction performance of multiple types of multi-layer LSTM or BDLSTM models is evaluated. Experimental results indicate that the proposed SBU-LSTM architecture, especially the two-layer BDLSTM network, can achieve superior performance for the network-wide traffic prediction in both accuracy and robustness. Further, comprehensive comparison results show that the proposed data imputation mechanism in the RNN-based models can achieve outstanding prediction performance when the model’s input data contains different patterns of missing values.
Load More