AD
Annabelle Déjardin
Author with expertise in Molecular Mechanisms of Flavonoid Biosynthesis in Plants
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
4,477
h-index:
21
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
14

Duplication of NRAMP3 gene in poplars generated two homologous transporters with distinct functions

Mathieu Pottier et al.Dec 4, 2021
ABSTRACT Transition metals are essential for a wealth of metabolic reactions, but their concentrations need to be tightly controlled across cells and cell compartments, as metal excess or imbalance has deleterious effects. Metal homeostasis is achieved by a combination of metal transport across membranes and metal binding to a variety of molecules. Gene duplication is a key process in evolution, as emergence of advantageous mutations on one of the copies can confer a new function. Here, we report that the poplar genome contains two paralogues encoding NRAMP3 metal transporters localized in tandem. All Populus species analyzed had two copies of NRAMP3 , whereas only one could be identified in Salix species indicating that duplication occurred when the two genera separated. Both copies are under purifying selection and encode functional transporters, as shown by expression in the yeast heterologous expression system. However, genetic complementation revealed that only one of the paralogues has retained the original function in release of metals stored in the vacuole previously characterized in A. thaliana . Confocal imaging showed that the other copy has acquired a distinct localization to the Trans Golgi Network (TGN). Expression in poplar suggested that the copy of NRAMP3 localized on the TGN has a novel function in the control of cell-to-cell transport of manganese. This work provides a clear case of neo-functionalization through change in the subcellular localization of a metal transporter as well as evidence for the involvement of the secretory pathway in cell-to-cell transport of manganese.
14
Citation1
0
Save
3

The PMT-driven p-coumaroylation of poplar lignins impacts lignin structure and improves wood saccharification

Catherine Lapierre et al.Feb 18, 2021
ABSTRACT Transgenic poplars ( Populus tremula x Populus alba , clone INRA 717-1B4) were produced by introducing the Brachypodium distachyon Bradi2g36910 ( BdPMT1 ) gene driven by the Arabidopsis ( Arabidopsis thaliana) Cinnamate 4-Hydroxylase ( AtC4H ) promoter in the wild-type (WT) line and in a line overexpressing the Arabidopsis Ferulate 5-Hydroxylase ( AtF5H). BdPMT1 encodes a transferase which catalyzes the acylation of monolignols by p- coumaric acid (CA). Several BdPMT1 - OE/WT and BdPMT1-OE/AtF5H-OE transgenic lines were grown in the greenhouse and BdPMT1 expression in xylem was confirmed by RT-PCR. The analysis of the cell walls (CW) of poplar stems and of corresponding purified dioxan lignins (DL) revealed that the BdPMT1 -OE lignins were as p -coumaroylated as the lignins of C3 grass straws. For some transformants, CA levels even reached about 11 mg/g CW and 66 mg/g DL, which by far exceeds those of Brachypodium or wheat samples. This unprecedentedly high p -coumaroylation of poplar lignins affected neither the poplar growth, nor the stem lignin content. By contrast, the transgenic lignins were structurally modified, with an increase of terminal units with free phenolic groups. Relative to controls, this increase argues for a reduced polymerization degree of BdPMT1 -OE lignins and makes them more soluble in cold NaOH solution. The p -coumaroylation of poplar samples, up to the levels of C3 grasses, improved the saccharification yield of alkali-pretreated poplar CW. These results establish that the genetically-driven p -coumaroylation of lignins is a promising strategy to make wood lignins more susceptible to the alkaline treatments that can be used during the industrial processing of lignocellulosics. One-sentence summary The expression of a grass p-coumaroyl-CoA:monolignol transferase induces a high p-coumaroylation of poplar lignins and a better saccharification of alkali-pretreated poplar wood without growth penalty