MF
Mingji Feng
Author with expertise in Immunological Responses in Aquatic Organisms
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
1,168
h-index:
6
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Draft genome of the wheat A-genome progenitor Triticum urartu

Hong‐Qing Ling et al.Mar 22, 2013
The genome sequence and its analysis of the diploid wild wheat Triticum urartu (progenitor of the wheat A genome) represent a tool for studying the complex, polyploid wheat genomes and should be a valuable resource for the genetic improvement of wheat. The hexaploid genome of bread wheat Triticum aestivum, designated AABBDD, evolved as a result of hybridization between three ancestral grasses. Two papers published in the issue of Nature present genome sequences and analysis of two of these wheat progenitors. First, the genome sequence of the diploid wild wheat T. urartu (ancestor of the A genome), which resembles cultivated wheat more strongly than either Aegilops speltoides (the B ancestor) or Ae. tauschii (the D donor). And second, the Ae. tauschii genome, together with an analysis of its transcriptome. These genomes and their analyses will be powerful tools for the study of complex, polyploid wheat genomes and a valuable resource for genetic improvement of wheat. Bread wheat (Triticum aestivum, AABBDD) is one of the most widely cultivated and consumed food crops in the world. However, the complex polyploid nature of its genome makes genetic and functional analyses extremely challenging. The A genome, as a basic genome of bread wheat and other polyploid wheats, for example, T. turgidum (AABB), T. timopheevii (AAGG) and T. zhukovskyi (AAGGAmAm), is central to wheat evolution, domestication and genetic improvement1. The progenitor species of the A genome is the diploid wild einkorn wheat T. urartu2, which resembles cultivated wheat more extensively than do Aegilops speltoides (the ancestor of the B genome3) and Ae. tauschii (the donor of the D genome4), especially in the morphology and development of spike and seed. Here we present the generation, assembly and analysis of a whole-genome shotgun draft sequence of the T. urartu genome. We identified protein-coding gene models, performed genome structure analyses and assessed its utility for analysing agronomically important genes and for developing molecular markers. Our T. urartu genome assembly provides a diploid reference for analysis of polyploid wheat genomes and is a valuable resource for the genetic improvement of wheat.
0
Citation708
0
Save
0

Genome Sequencing of the Perciform Fish Larimichthys crocea Provides Insights into Molecular and Genetic Mechanisms of Stress Adaptation

Jingqun Ao et al.Apr 2, 2015
The large yellow croaker Larimichthys crocea (L. crocea) is one of the most economically important marine fish in China and East Asian countries. It also exhibits peculiar behavioral and physiological characteristics, especially sensitive to various environmental stresses, such as hypoxia and air exposure. These traits may render L. crocea a good model for investigating the response mechanisms to environmental stress. To understand the molecular and genetic mechanisms underlying the adaptation and response of L. crocea to environmental stress, we sequenced and assembled the genome of L. crocea using a bacterial artificial chromosome and whole-genome shotgun hierarchical strategy. The final genome assembly was 679 Mb, with a contig N50 of 63.11 kb and a scaffold N50 of 1.03 Mb, containing 25,401 protein-coding genes. Gene families underlying adaptive behaviours, such as vision-related crystallins, olfactory receptors, and auditory sense-related genes, were significantly expanded in the genome of L. crocea relative to those of other vertebrates. Transcriptome analyses of the hypoxia-exposed L. crocea brain revealed new aspects of neuro-endocrine-immune/metabolism regulatory networks that may help the fish to avoid cerebral inflammatory injury and maintain energy balance under hypoxia. Proteomics data demonstrate that skin mucus of the air-exposed L. crocea had a complex composition, with an unexpectedly high number of proteins (3,209), suggesting its multiple protective mechanisms involved in antioxidant functions, oxygen transport, immune defence, and osmotic and ionic regulation. Our results reveal the molecular and genetic basis of fish adaptation and response to hypoxia and air exposure. The data generated by this study will provide valuable resources for the genetic improvement of stress resistance and yield potential in L. crocea.
0
Citation252
0
Save
0

Genome sequencing of the perciform fish Larimichthys crocea provides insights into stress adaptation

Jingqun Ao et al.Aug 18, 2014
The large yellow croaker Larimichthys crocea (L. crocea) is one of the most economically important marine fish in China and East Asian countries. It also exhibits peculiar behavioral and physiological characteristics, especially sensitive to various environmental stresses, such as hypoxia and air exposure. These traits may render L. crocea a good model for investigating the response mechanisms to environmental stress. To understand the molecular and genetic mechanisms underlying the adaptation and response of L. crocea to environmental stress, we sequenced and assembled the genome of L. crocea using a bacterial artificial chromosome and whole-genome shotgun hierarchical strategy. The final genome assembly was 679 Mb, with a contig N50 of 63.11 kb and a scaffold N50 of 1.03 Mb, containing 25,401 protein-coding genes. Gene families underlying adaptive behaviours, such as vision-related crystallins, olfactory receptors, and auditory sense-related genes, were significantly expanded in the genome of L. crocea relative to those of other vertebrates. Transcriptome analyses of the hypoxia-exposed L. crocea brain revealed new aspects of neuro-endocrine-immune/metabolism regulatory networks that may help the fish to avoid cerebral inflammatory injury and maintain energy balance under hypoxia. Proteomics data demonstrate that skin mucus of the air-exposed L. crocea had a complex composition, with an unexpectedly high number of proteins (3,209), suggesting its multiple protective mechanisms involved in antioxidant functions, oxygen transport, immune defence, and osmotic and ionic regulation. Our results provide novel insights into the mechanisms of fish adaptation and response to hypoxia and air exposure.
0
Citation1
0
Save