MP
Marjolein Peters
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
5,991
h-index:
27
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index

Elizabeth Speliotes et al.Oct 10, 2010
+110
G
N
E
Ruth Loos and colleagues report results of a large genome-wide association study for body mass index. They identify 18 new loci associated with this trait, some of which map near key hypothalamic regulators of energy balance. Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ∼2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 × 10−8), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
0
Citation2,862
0
Save
0

Systematic identification of trans eQTLs as putative drivers of known disease associations

Harm-Jan Westra et al.Sep 8, 2013
+55
H
C
H
Identifying the downstream effects of disease-associated SNPs is challenging. To help overcome this problem, we performed expression quantitative trait locus (eQTL) meta-analysis in non-transformed peripheral blood samples from 5,311 individuals with replication in 2,775 individuals. We identified and replicated trans eQTLs for 233 SNPs (reflecting 103 independent loci) that were previously associated with complex traits at genome-wide significance. Some of these SNPs affect multiple genes in trans that are known to be altered in individuals with disease: rs4917014, previously associated with systemic lupus erythematosus (SLE), altered gene expression of C1QB and five type I interferon response genes, both hallmarks of SLE. DeepSAGE RNA sequencing showed that rs4917014 strongly alters the 3' UTR levels of IKZF1 in cis, and chromatin immunoprecipitation and sequencing analysis of the trans-regulated genes implicated IKZF1 as the causal gene. Variants associated with cholesterol metabolism and type 1 diabetes showed similar phenomena, indicating that large-scale eQTL mapping provides insight into the downstream effects of many trait-associated variants.
0
Citation1,613
0
Save
0

Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution

Iris Heid et al.Oct 10, 2010
+94
J
A
I
Cecilia Lindgren and colleagues report results of a large-scale genome-wide association study for waist-to-hip ratio, a measure of body fat distribution. They identify 13 new loci associated with this trait, several of which show stronger effects in women than in men. Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10−9 to P = 1.8 × 10−40) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10−3 to P = 1.2 × 10−13). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
0
Citation913
0
Save
0

Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

Sonja Berndt et al.Apr 7, 2013
+99
R
S
S
Erik Ingelsson and colleagues report a large-scale genome-wide meta-analysis for associations to the extremes of anthropometric traits, including body mass index, height, waist-to-hip ratio and clinical obesity. They identify four loci newly associated with height and seven loci newly associated with clinical obesity and find overlap in the genetic structure and distribution of variants identified for these extremes of the trait distributions and for the general population. Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.
0
Citation603
0
Save
0

Novel DNA methylation sites of glucose and insulin homeostasis: an integrative cross-omics analysis

Jun Liu et al.Oct 18, 2018
+56
S
J
J
Despite existing reports on differential DNA methylation in type 2 diabetes (T2D) and obesity, our understanding of the functional relevance of the phenomenon remains limited. Because obesity is the main risk factor for T2D and a driver of methylation from previous study, we aimed to explore the effect of DNA methylation in the early phases of T2D pathology while accounting for body mass index (BMI). We performed a blood-based epigenome-wide association study (EWAS) of fasting glucose and insulin among 4,808 non-diabetic European individuals and replicated the findings in an independent sample consisting of 11,750 non-diabetic subjects. We integrated blood-based in silico cross-omics databases comprising genomics, epigenomics and transcriptomics collected by BIOS project of the Biobanking and BioMolecular resources Research Infrastructure of the Netherlands (BBMRI-NL), the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC), the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium, and the tissue-specific Genotype-Tissue Expression (GTEx) project. We identified and replicated nine novel differentially methylated sites in whole blood (P-value < 1.27 × 10-7): sites in LETM1, RBM20, IRS2, MAN2A2 genes and 1q25.3 region were associated with fasting insulin; sites in FCRL6, SLAMF1, APOBEC3H genes and 15q26.1 region were associated with fasting glucose. The association between SLAMF1, APOBEC3H and 15q26.1 methylation sites and glucose emerged only when accounted for BMI. Follow-up in silico cross-omics analyses indicate that the cis-acting meQTLs near SLAMF1 and SLAMF1 expression are involved in glucose level regulation. Moreover, our data suggest that differential methylation in FCRL6 may affect glucose level and the risk of T2D by regulating FCLR6 expression in the liver. In conclusion, the present study provided nine new DNA methylation sites associated with glycemia homeostasis and also provided new insights of glycemia related loci into the genetics, epigenetics and transcriptomics pathways based on the integration of cross-omics data in silico.
0

Cell specific eQTL analysis without sorting cells

Harm-Jan Westra et al.Feb 12, 2014
+60
J
Y
H
Expression quantitative trait locus (eQTL) mapping on tissue, organ or whole organism data can detect associations that are generic across cell types. We describe a new method to focus upon specific cell types without first needing to sort cells. We applied the method to whole blood data from 5,683 samples and demonstrate that SNPs associated with Crohn’s disease preferentially affect gene expression within neutrophils.