NK
Nicholas Knoblauch
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(38% Open Access)
Cited by:
850
h-index:
15
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics

Jean Morrison et al.May 25, 2020
Mendelian randomization (MR) is a valuable tool for detecting causal effects by using genetic variant associations. Opportunities to apply MR are growing rapidly with the increasing number of genome-wide association studies (GWAS). However, existing MR methods rely on strong assumptions that are often violated, leading to false positives. Correlated horizontal pleiotropy, which arises when variants affect both traits through a heritable shared factor, remains a particularly challenging problem. We propose a new MR method, Causal Analysis Using Summary Effect estimates (CAUSE), that accounts for correlated and uncorrelated horizontal pleiotropic effects. We demonstrate, in simulations, that CAUSE avoids more false positives induced by correlated horizontal pleiotropy than other methods. Applied to traits studied in recent GWAS studies, we find that CAUSE detects causal relationships that have strong literature support and avoids identifying most unlikely relationships. Our results suggest that shared heritable factors are common and may lead to many false positives using alternative methods. CAUSE is a new Mendelian randomization method that accounts for correlated and uncorrelated horizontal pleiotropic effects. CAUSE is more robust to correlated pleiotropy than other methods and avoids identifying unlikely causal relationships.
0
Citation392
0
Save
0

A Bayesian method for rare variant analysis using functional annotations and its application to Autism

Shengtong Han et al.Nov 1, 2019
Rare genetic variants make significant contributions to human diseases. Compared to common variants, rare variants have larger effect sizes and are generally free of linkage disequilibrium (LD), which makes it easier to identify causal variants. Numerous methods have been developed to analyze rare variants in a gene or region in association studies, with the goal of finding risk genes by aggregating information of all variants of a gene. These methods, however, often make unrealistic assumptions, e.g. all rare variants in a risk gene would have non-zero effects. In practice, current methods for gene-based analysis often fail to show any advantage over simple single-variant analysis. In this work, we develop a Bayesian method: MIxture model based Rare variant Analysis on GEnes (MIRAGE). MIRAGE captures the heterogeneity of variant effects by treating all variants of a gene as a mixture of risk and non-risk variants, and models the prior probabilities of being risk variants as function of external information of variants, such as allele frequencies and predicted deleterious effects. MIRAGE uses an empirical Bayes approach to estimate these prior probabilities by combining information across genes. We demonstrate in both simulations and analysis of an exome-sequencing dataset of Autism, that MIRAGE significantly outperforms current methods for rare variant analysis. In particular, the top genes identified by MIRAGE are highly enriched with known or plausible Autism risk genes. Our results highlight several novel Autism genes with high Bayesian posterior probabilities and functional connections with Autism. MIRAGE is available at https://xinhe-lab.github.io/mirage .
0

A statistical framework for mapping risk genes from de novo mutations in whole-genome sequencing studies

Yuwen Liu et al.Sep 26, 2016
Analysis of de novo mutations (DNMs) from sequencing data of nuclear families has identified risk genes for many complex diseases, including multiple neurodevelopmental and psychiatric disorders. Most of these efforts have focused on mutations in protein-coding sequences. Evidence from genome-wide association studies (GWAS) strongly suggests that variants important to human diseases often lie in non-coding regions. Extending DNM-based approaches to non-coding sequences is, however, challenging because the functional significance of non-coding mutations is difficult to predict. We propose a new statistical framework for analyzing DNMs from whole-genome sequencing (WGS) data. This method, TADA-Annotations (TADA-A), is a major advance of the TADA method we developed earlier for DNM analysis in coding regions. TADA-A is able to incorporate many functional annotations such as conservation and enhancer marks, learn from data which annotations are informative of pathogenic mutations and combine both coding and non-coding mutations at the gene level to detect risk genes. It also supports meta-analysis of multiple DNM studies, while adjusting for study-specific technical effects. We applied TADA-A to WGS data of ~300 autism family trios across five studies, and discovered several new autism risk genes. The software is freely available for all research uses.
0

Model-based analysis of positive selection significantly expands the list of cancer driver genes, including RNA methyltransferases

Siming Zhao et al.Jul 12, 2018
Identifying driver genes is a central problem in cancer biology and has received great attentions from researchers. However, existing methods for detecting driver genes from somatic mutation data struggle to distinguish positive selection signals from highly heterogeneous background mutational processes. Here, we present a powerful statistical approach, driverMAPS (Model-based Analysis of Positive Selection) for driver gene identification. The key feature of driverMAPS is its modeling of mutation rates at the base-level, reflecting both background mutational processes and positive selection. Its selection model captures elevated mutation rates in functionally important sites using multiple external annotations, as well as spatial clustering of mutations. Its background mutation model accounts for both known covariates and local, gene-specific, variation caused by unknown factors. Applying driverMAPS to TCGA data across 20 tumor types identified 159 new potential driver genes. Cross-referencing this list with data from external sources strongly supports these findings. The novel genes include the mRNA methytransferases METTL3-METTL14, and we experimentally validated the functional importance of somatic mutations in METTL3, confirming it as a potential tumor suppressor gene in bladder cancer.
0

Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics

Jean Morrison et al.Jun 26, 2019
Mendelian randomization (MR) is a valuable tool for detecting evidence of causal relationships using genetic variant associations. Opportunities to apply MR are growing rapidly with the number of genome-wide association studies (GWAS) with publicly available results. However, existing MR methods rely on strong assumptions that are often violated, leading to false positives. Many methods have been proposed loosening these assumptions. However, it has remained challenging to account for correlated pleiotropy, which arises when variants affect both traits through a heritable shared factor. We propose a new MR method, Causal Analysis Using Summary Effect Estimates (CAUSE), that accounts for correlated and uncorrelated horizontal pleiotropic effects. We demonstrate in simulations that CAUSE is more robust to correlated pleiotropy than other methods. Applied to traits studied in recent GWAS, we find that CAUSE detects causal relationships with strong literature support and avoids identifying most unlikely relationships. Our results suggest that many pairs of traits identified as causal using alternative methods may be false positives due to horizontal pleiotropy.