CR
Charles Roberts
Author with expertise in Chromatin Remodeling in Cancer and Development
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
19
(74% Open Access)
Cited by:
10,320
h-index:
61
/
i10-index:
99
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mutational heterogeneity in cancer and the search for new cancer-associated genes

Michael Lawrence et al.Jun 16, 2013
+62
P
P
M
As the sample size in cancer genome studies increases, the list of genes identified as significantly mutated is likely to include more false positives; here, this problem is identified as stemming largely from mutation heterogeneity, and a new analytical methodology designed to overcome this problem is described. Cancer genomic approaches have identified scores of genes responsible for the initiation and progression of cancer. But as the sample sizes increase, the list of putatively significant genes identified by current analytical methods continues to grow and is likely to include many false positives. This study shows that this situation stems largely from mutational heterogeneity and presents a novel methodology, MutSigCV, that overcomes the problem by incorporating mutational heterogeneity into the analysis. Application of MutSigCV to more than 3,000 tumour samples from 27 different tumour types shows that mutation frequencies vary more than 1,000-fold between extreme samples both between and within tumour types. And when applied to a data set on lung cancer, MutSigCV reduced the list of significantly mutated genes from 450 to a more manageable 11, most of them previously reported to be mutated in squamous cell lung cancer. Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer1,2,3,4,5,6,7,8,9. These studies involve the sequencing of matched tumour–normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour–normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.
0
Citation5,086
0
Save
0

Toward understanding and exploiting tumor heterogeneity

Ash Alizadeh et al.Aug 1, 2015
+24
M
A
A
In this Perspective, attendees of the Herrenhausen Tumour Heterogeneity meeting discuss the challenges in understanding tumour heterogeneity and propose ways forward for overcoming these hurdles. The extent of tumor heterogeneity is an emerging theme that researchers are only beginning to understand. How genetic and epigenetic heterogeneity affects tumor evolution and clinical progression is unknown. The precise nature of the environmental factors that influence this heterogeneity is also yet to be characterized. Nature Medicine, Nature Biotechnology and the Volkswagen Foundation organized a meeting focused on identifying the obstacles that need to be overcome to advance translational research in and tumor heterogeneity. Once these key questions were established, the attendees devised potential solutions. Their ideas are presented here.
0
Citation659
0
Save
0

Epigenetic Antagonism between Polycomb and SWI/SNF Complexes during Oncogenic Transformation

Barbara Wilson et al.Oct 1, 2010
+7
X
X
B
Epigenetic alterations have been increasingly implicated in oncogenesis. Analysis of Drosophila mutants suggests that Polycomb and SWI/SNF complexes can serve antagonistic developmental roles. However, the relevance of this relationship to human disease is unclear. Here, we have investigated functional relationships between these epigenetic regulators in oncogenic transformation. Mechanistically, we show that loss of the SNF5 tumor suppressor leads to elevated expression of the Polycomb gene EZH2 and that Polycomb targets are broadly H3K27-trimethylated and repressed in SNF5-deficient fibroblasts and cancers. Further, we show antagonism between SNF5 and EZH2 in the regulation of stem cell-associated programs and that Snf5 loss activates those programs. Finally, using conditional mouse models, we show that inactivation of Ezh2 blocks tumor formation driven by Snf5 loss.
0
Citation563
0
Save
0

Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting

Andrew Aguirre et al.Jun 4, 2016
+27
B
R
A
Abstract The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest. By examining single-guide RNAs that map to multiple genomic sites, we found that this cell response to CRISPR/Cas9 editing correlated strongly with the number of target loci. These observations indicate that genome targeting by CRISPR/Cas9 elicits a gene-independent antiproliferative cell response. This effect has important practical implications for the interpretation of CRISPR/Cas9 screening data and confounds the use of this technology for the identification of essential genes in amplified regions. Significance: We found that the number of CRISPR/Cas9-induced DNA breaks dictates a gene-independent antiproliferative response in cells. These observations have practical implications for using CRISPR/Cas9 to interrogate cancer gene function and illustrate that cancer cells are highly sensitive to site-specific DNA damage, which may provide a path to novel therapeutic strategies. Cancer Discov; 6(8); 914–29. ©2016 AACR. See related commentary by Sheel and Xue, p. 824. See related article by Munoz et al., p. 900. This article is highlighted in the In This Issue feature, p. 803
0
Citation547
0
Save
0

Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice

Charles Roberts et al.Nov 28, 2000
+2
M
S
C
Malignant rhabdoid tumor (MRT) is an aggressive, highly lethal cancer of young children. Tumors occur in various locations, including kidney, brain, and soft tissues. Despite intensive therapy, 80% of affected children die, often within 1 year of diagnosis. The majority of MRT samples and cell lines have sustained biallelic inactivating mutations of the hSNF5 (integrase interactor 1) gene, suggesting that hSNF5 may act as a tumor suppressor. We sought to examine the role of Snf5 in development and cancer in a murine model. Here we report that Snf5 is widely expressed during embryogenesis with focal areas of high-level expression in the mandibular portion of the first branchial arch and central nervous system. Homozygous knockout of Snf5 results in embryonic lethality by embryonic day 7, whereas heterozygous mice are born at the expected frequency and appear normal. However, beginning as early as 5 weeks of age, heterozygous mice develop tumors consistent with MRT. The majority of tumors arise in soft tissues derived from the first branchial arch. Our findings constitute persuasive genetic evidence that Snf5, a core member of the Swi/Snf chromatin-remodeling complex, functions as a tumor suppressor gene, and, moreover, Snf5 heterozygotes provide a murine model of this lethal pediatric cancer.
0
Citation411
0
Save
0

Deregulation of a Homeobox Gene, HOX11, by the t(10;14) in T Cell Leukemia

Masahiko Hatano et al.Jul 5, 1991
+2
M
C
M
Molecular cloning of the t(10;14)(q24;q11) recurrent breakpoint of T cell acute lymphoblastic leukemia has demonstrated a transcript for the candidate gene TCL3. Characterization of this gene from chromosome segment 10q24 revealed it to be a new homeobox, HOX11. The HOX11 homeodomain is most similar to that of the murine gene Hlx and possesses a markedly glycine-rich variable region and an acidic carboxyl terminus. HOX11, while expressed in liver, was not detected in normal thymus or T cells. This lineage-restricted homeobox gene is deregulated upon translocation into the T cell receptor locus where it may act as an oncogene.
0
Citation409
0
Save
0

Mutational processes shape the landscape of TP53 mutations in human cancer

Andrew Giacomelli et al.Sep 7, 2018
+24
R
X
A
Unlike most tumor suppressor genes, the most common genetic alterations in tumor protein p53 (TP53) are missense mutations1,2. Mutant p53 protein is often abundantly expressed in cancers and specific allelic variants exhibit dominant-negative or gain-of-function activities in experimental models3–8. To gain a systematic view of p53 function, we interrogated loss-of-function screens conducted in hundreds of human cancer cell lines and performed TP53 saturation mutagenesis screens in an isogenic pair of TP53 wild-type and null cell lines. We found that loss or dominant-negative inhibition of wild-type p53 function reliably enhanced cellular fitness. By integrating these data with the Catalog of Somatic Mutations in Cancer (COSMIC) mutational signatures database9,10, we developed a statistical model that describes the TP53 mutational spectrum as a function of the baseline probability of acquiring each mutation and the fitness advantage conferred by attenuation of p53 activity. Collectively, these observations show that widely-acting and tissue-specific mutational processes combine with phenotypic selection to dictate the frequencies of recurrent TP53 mutations. Large-scale loss-of-function screens and TP53 saturation mutagenesis screens in human cancer cell lines suggest that mutational processes combine with phenotypic selection to shape the landscape of somatic mutations at the TP53 locus.
0
Citation407
0
Save
0

Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma

Jennifer Perry et al.Dec 15, 2014
+36
P
A
J
Significance We present, to our knowledge, the first comprehensive next-generation sequencing of osteosarcoma in combination with a functional genomic screen in a genetically defined mouse model of osteosarcoma. Our data provide a strong rationale for targeting the phosphatidylinositol 3-kinase/mammalian target of rapamycin pathway in osteosarcoma and a foundation for rational clinical trial design. These findings present an immediate clinical opportunity because multiple inhibitors of this pathway are currently in clinical trials.
0
Citation402
0
Save
0

A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers

Ryan Lee et al.Jul 16, 2012
+10
S
C
R
Cancer is principally considered a genetic disease, and numerous mutations are thought essential to drive its growth. However, the existence of genomically stable cancers and the emergence of mutations in genes that encode chromatin remodelers raise the possibility that perturbation of chromatin structure and epigenetic regulation are capable of driving cancer formation. Here we sequenced the exomes of 35 rhabdoid tumors, highly aggressive cancers of early childhood characterized by biallelic loss of SMARCB1, a subunit of the SWI/SNF chromatin remodeling complex. We identified an extremely low rate of mutation, with loss of SMARCB1 being essentially the sole recurrent event. Indeed, in 2 of the cancers there were no other identified mutations. Our results demonstrate that high mutation rates are dispensable for the genesis of cancers driven by mutation of a chromatin remodeling complex. Consequently, cancer can be a remarkably genetically simple disease.
0
Citation381
0
Save
0

ARID1B is a specific vulnerability in ARID1A-mutant cancers

Katherine Helming et al.Feb 23, 2014
+12
B
X
K
Mutations inactivating ARID1A, a subunit of the chromatin remodeling SWI/SNF complex, have been identified in some human cancers. This study reveals that cancer cells with mutated ARID1A are dependent on the residual activity of the complex for proliferation and that even if concomitant alterations in the ARID1A homolog ARID1B can occur, loss of ARID1B activity confers a specific vulnerability to ARID1A-mutant cells that may in the future be explored for targeting purposes. Recent studies have revealed that ARID1A, encoding AT-rich interactive domain 1A (SWI-like), is frequently mutated across a variety of human cancers and also has bona fide tumor suppressor properties. Consequently, identification of vulnerabilities conferred by ARID1A mutation would have major relevance for human cancer. Here, using a broad screening approach, we identify ARID1B, an ARID1A homolog whose gene product is mutually exclusive with ARID1A in SWI/SNF complexes, as the number 1 gene preferentially required for the survival of ARID1A-mutant cancer cell lines. We show that loss of ARID1B in ARID1A-deficient backgrounds destabilizes SWI/SNF and impairs proliferation in both cancer cells and primary cells. We also find that ARID1A and ARID1B are frequently co-mutated in cancer but that ARID1A-deficient cancers retain at least one functional ARID1B allele. These results suggest that loss of ARID1A and ARID1B alleles cooperatively promotes cancer formation but also results in a unique functional dependence. The results further identify ARID1B as a potential therapeutic target for ARID1A-mutant cancers.
0
Citation371
0
Save
Load More