LS
Luwei Sun
Author with expertise in Graphene: Properties, Synthesis, and Applications
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(17% Open Access)
Cited by:
2,372
h-index:
25
/
i10-index:
42
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes

Hubiao Huang et al.Dec 19, 2013
Pressure-driven ultrafiltration membranes are important in separation applications. Advanced filtration membranes with high permeance and enhanced rejection must be developed to meet rising worldwide demand. Here we report nanostrand-channelled graphene oxide ultrafiltration membranes with a network of nanochannels with a narrow size distribution (3–5 nm) and superior separation performance. This permeance offers a 10-fold enhancement without sacrificing the rejection rate compared with that of graphene oxide membranes, and is more than 100 times higher than that of commercial ultrafiltration membranes with similar rejection. The flow enhancement is attributed to the porous structure and significantly reduced channel length. An abnormal pressure-dependent separation behaviour is also reported, where the elastic deformation of nanochannels offers tunable permeation and rejection. The water flow through these hydrophilic graphene oxide nanochannels is identified as viscous. This nanostrand-channelling approach is also extendable to other laminate membranes, providing potential for accelerating separation and water-purification processes. Pressure-driven ultrafiltration membranes are important for industrial and environmental applications. Here, the authors describe nanochannelled graphene oxide membranes, fabricated via a copper hydroxide nanostrand templating approach and evaluate their performance in water purification processes.
0

Ultrafast Molecule Separation through Layered WS2 Nanosheet Membranes

Luwei Sun et al.May 22, 2014
Two-dimensional layered materials have joined in the family of size-selective separation membranes recently. Here, chemically exfoliated tungsten disulfide (WS2) nanosheets are assembled into lamellar thin films and explored as an ultrafast separation membrane for small molecules with size of about 3 nm. Layered WS2 membranes exhibit 5- and 2-fold enhancement in water permeance of graphene oxide membranes and MoS2 laminar membranes with similar rejection, respectively. To further increase the water permeance, ultrathin nanostrands are used as templates to generate more fluidic channel networks in the WS2 membrane. The water permeation behavior and separation performance in the pressure loading–unloading process reveal that the channels created by the ultrathin nanostrands are cracked under high pressure and result in a further 2-fold increase of the flux without significantly degrading the rejection for 3 nm molecules. This is supported by finite-element-based mechanical simulation. These layered WS2 membranes demonstrate up to 2 orders of magnitude higher separation performance than that of commercial membranes with similar rejections and hold the promising potential for water purification.
0

The role of Cdx2 as a lineage specific transcriptional repressor for pluripotent network during trophectoderm and inner cell mass specification

Daosheng Huang et al.Apr 5, 2017
The first cellular differentiation event in mouse development leads to the formation of the blastocyst consisting of the inner cell mass (ICM) and an outer functional epithelium called trophectoderm(TE). The lineage specific transcription factor CDX2 is required for proper TE specification, where it promotes expression of TE genes, and represses expression of Pou5f1 (OCT4) by inhibiting OCT4 from promoting its own expression. However its downstream network in the developing early embryo is not fully characterized. Here, we performed high-throughput single embryo qPCR analysis in Cdx2 null embryos to identify components of the CDX2-regulated network in vivo. To identify genes likely to be regulated by CDX2 directly, we performed CDX2 ChIP-Seq on trophoblast stem (TS) cells, derived from the TE. In addition, we examined the dynamics of gene expression changes using an inducible CDX2 embryonic stem (ES) cell system, so that we could predict which CDX2-bound genes are activated or repressed by CDX2 binding. By integrating these data with observations of chromatin modifications, we were able to identify novel regulatory elements that are likely to repress gene expression in a lineage-specific manner.Interestingly, we found CDX2 binding sites within regulatory elements of key pluripotent genes such as Pou5f1 and Nanog, pointing to the existence of a novel mechanism by which CDX2 maintains repression of OCT4 in trophoblast. Our study proposes a general mechanism in regulating lineage segregation during mammalian development.