Calcium-dependent activator protein for secretion 1 (CAPS1) facilitates the docking and priming of synaptic and dense core vesicles. A conserved hairpin structure in the CAPS1 pre-mRNA allows an post-transcriptional adenosine-to-inosine RNA editing event to alter a genomically-encoded glutamate to a glycine codon. Functional comparisons of CAPS1 protein isoforms in primary hippocampal neurons show that elevation of edited CAPS1 isoforms facilitates presynaptic vesicle clustering and turnover. Conversely, non-edited CAPS1 isoforms slow evoked release, increase spontaneous fusion, and loosen the clustering of synaptic vesicles. Therefore, CAPS1 editing promotes organization of the vesicle pool in a way that is beneficial for evoked release, while non-edited isoforms promote more lax vesicle organization that widens distribution, attenuates evoked release and eases the control of spontaneous fusion. Overall, RNA editing of CAPS1 is a mechanism to fine tune neurotransmitter release.