PK
Pawel Krupinski
Author with expertise in Molecular Mechanisms of Plant Development and Regulation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
1,640
h-index:
14
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Multi-scale dynamical modelling of T-cell development from an early thymic progenitor state to lineage commitment

Victor Olariu et al.Jun 11, 2019
Thymic development of committed pro-T-cells from multipotent hematopoietic precursors offers a unique opportunity to dissect the molecular circuitry establishing cell identity in response to environmental signals. This transition encompasses programmed shutoff of stem/progenitor genes, upregulation of T-cell specification genes, extensive proliferation, and commitment after a delay. We have incorporated these factors, as well as new single cell gene expression and developmental kinetics data, into a three-level dynamic model of commitment based upon regulation of the commitment gene Bcl11b. The first level is a core gene regulatory network architecture determined by transcription factor perturbation data, the second a stochastically controlled epigenetic gate, and the third a proliferation model validated by growth and commitment kinetics measured at single-cell levels. Using expression values consistent with single molecule RNA-FISH measurements of key transcription factors, this single-cell model exhibits state switching consistent with measured population and clonal proliferation and commitment times. The resulting multi-scale model provides a powerful mechanistic framework for dissecting commitment dynamics.
0

The self-organization of plant microtubules in three dimensions enables stable cortical localization and sensitivity to external cues

Vincent Mirabet et al.Oct 27, 2017
Many cell functions rely on the ability of microtubules to self-organize as complex networks. In plants, cortical microtubules are essential to determine cell shape as they guide the deposition of cellulose microfibrils, and thus control mechanical anisotropy in the cell wall. Here we analyze how, in turn, cell shape may influence microtubule behavior. Using a computational model of microtubules enclosed in a three-dimensional space, We show that the microtubule network has spontaneous configurations that could explain many experimental observations without resorting to specific regulation. In particular, we find that the preferred localization of microtubules at the cortex emerges from directional persistence of the microtubules, combined with their growth mode. We identified microtubule parameters that seem relatively insensitive to cell shape, such as length or number. In contrast, microtubule array anisotropy depends strongly on local curvature of the cell surface and global orientation follows robustly the longest axis of the cell. Lastly, we found that the network is capable of reorienting toward weak external directional cues. Altogether our simulations show that the microtubule network is a good transducer of weak external polarity, while at the same time, it easily reaches stable global configurations.