AV
Alexei Vázquez
Author with expertise in Metabolic Reprogramming in Cancer Biology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
28
(86% Open Access)
Cited by:
9,773
h-index:
56
/
i10-index:
112
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

High-Quality Binary Protein Interaction Map of the Yeast Interactome Network

Haiyuan Yu et al.Aug 22, 2008
Current yeast interactome network maps contain several hundred molecular complexes with limited and somewhat controversial representation of direct binary interactions. We carried out a comparative quality assessment of current yeast interactome data sets, demonstrating that high-throughput yeast two-hybrid (Y2H) screening provides high-quality binary interaction information. Because a large fraction of the yeast binary interactome remains to be mapped, we developed an empirically controlled mapping framework to produce a “second-generation” high-quality, high-throughput Y2H data set covering ∼20% of all yeast binary interactions. Both Y2H and affinity purification followed by mass spectrometry (AP/MS) data are of equally high quality but of a fundamentally different and complementary nature, resulting in networks with different topological and biological properties. Compared to co-complex interactome models, this binary map is enriched for transient signaling interactions and intercomplex connections with a highly significant clustering between essential proteins. Rather than correlating with essentiality, protein connectivity correlates with genetic pleiotropy.
0
Citation1,398
0
Save
0

Global protein function prediction from protein-protein interaction networks

Alexei Vázquez et al.May 12, 2003
Determining protein function is one of the most challenging problems of the post-genomic era. The availability of entire genome sequences and of high-throughput capabilities to determine gene coexpression patterns has shifted the research focus from the study of single proteins or small complexes to that of the entire proteome1. In this context, the search for reliable methods for assigning protein function is of primary importance. There are various approaches available for deducing the function of proteins of unknown function using information derived from sequence similarity or clustering patterns of co-regulated genes2,3, phylogenetic profiles4, protein-protein interactions (refs. 5–8 and Samanta, M.P. and Liang, S., unpublished data), and protein complexes9,10. Here we propose the assignment of proteins to functional classes on the basis of their network of physical interactions as determined by minimizing the number of protein interactions among different functional categories. Function assignment is proteome-wide and is determined by the global connectivity pattern of the protein network. The approach results in multiple functional assignments, a consequence of the existence of multiple equivalent solutions. We apply the method to analyze the yeast Saccharomyces cerevisiae protein-protein interaction network5. The robustness of the approach is tested in a system containing a high percentage of unclassified proteins and also in cases of deletion and insertion of specific protein interactions.
0
Citation698
0
Save
0

Modeling bursts and heavy tails in human dynamics

Alexei Vázquez et al.Mar 24, 2006
Current models of human dynamics, used from risk assessment to communications, assume that human actions are randomly distributed in time and thus well approximated by Poisson processes. We provide direct evidence that for five human activity patterns the timing of individual human actions follow non-Poisson statistics, characterized by bursts of rapidly occurring events separated by long periods of inactivity. We show that the bursty nature of human behavior is a consequence of a decision based queuing process: when individuals execute tasks based on some perceived priority, the timing of the tasks will be heavy tailed, most tasks being rapidly executed, while a few experiencing very long waiting times. We discuss two queueing models that capture human activity. The first model assumes that there are no limitations on the number of tasks an individual can hadle at any time, predicting that the waiting time of the individual tasks follow a heavy tailed distribution with exponent alpha=3/2. The second model imposes limitations on the queue length, resulting in alpha=1. We provide empirical evidence supporting the relevance of these two models to human activity patterns. Finally, we discuss possible extension of the proposed queueing models and outline some future challenges in exploring the statistical mechanisms of human dynamics.
0

Epstein–Barr virus and virus human protein interaction maps

Michael Calderwood et al.Apr 20, 2007
A comprehensive mapping of interactions among Epstein–Barr virus (EBV) proteins and interactions of EBV proteins with human proteins should provide specific hypotheses and a broad perspective on EBV strategies for replication and persistence. Interactions of EBV proteins with each other and with human proteins were assessed by using a stringent high-throughput yeast two-hybrid system. Overall, 43 interactions between EBV proteins and 173 interactions between EBV and human proteins were identified. EBV–EBV and EBV–human protein interaction, or “interactome” maps provided a framework for hypotheses of protein function. For example, LF2, an EBV protein of unknown function interacted with the EBV immediate early R transactivator (Rta) and was found to inhibit Rta transactivation. From a broader perspective, EBV genes can be divided into two evolutionary classes, “core” genes, which are conserved across all herpesviruses and subfamily specific, or “noncore” genes. Our EBV–EBV interactome map is enriched for interactions among proteins in the same evolutionary class. Furthermore, human proteins targeted by EBV proteins were enriched for highly connected or “hub” proteins and for proteins with relatively short paths to all other proteins in the human interactome network. Targeting of hubs might be an efficient mechanism for EBV reorganization of cellular processes.
0
Citation385
0
Save
Load More