AV
Alexei Vázquez
Author with expertise in Statistical Mechanics of Complex Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
22
(82% Open Access)
Cited by:
8,158
h-index:
55
/
i10-index:
112
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Dynamical and Correlation Properties of the Internet

Romualdo Pastor‐Satorras et al.Nov 1, 2001
A
A
R
The description of the Internet topology is an important open problem, recently tackled with the introduction of scale-free networks. We focus on the topological and dynamical properties of real Internet maps in a three-year time interval. We study higher order correlation functions as well as the dynamics of several quantities. We find that the Internet is characterized by nontrivial correlations among nodes and different dynamical regimes. We point out the importance of node hierarchy and aging in the Internet structure and growth. Our results provide hints towards the realistic modeling of the Internet evolution.
0

High-Quality Binary Protein Interaction Map of the Yeast Interactome Network

Haiyuan Yu et al.Aug 22, 2008
+31
M
P
H
Current yeast interactome network maps contain several hundred molecular complexes with limited and somewhat controversial representation of direct binary interactions. We carried out a comparative quality assessment of current yeast interactome data sets, demonstrating that high-throughput yeast two-hybrid (Y2H) screening provides high-quality binary interaction information. Because a large fraction of the yeast binary interactome remains to be mapped, we developed an empirically controlled mapping framework to produce a “second-generation” high-quality, high-throughput Y2H data set covering ∼20% of all yeast binary interactions. Both Y2H and affinity purification followed by mass spectrometry (AP/MS) data are of equally high quality but of a fundamentally different and complementary nature, resulting in networks with different topological and biological properties. Compared to co-complex interactome models, this binary map is enriched for transient signaling interactions and intercomplex connections with a highly significant clustering between essential proteins. Rather than correlating with essentiality, protein connectivity correlates with genetic pleiotropy.
0
Citation1,398
0
Save
0

An empirical framework for binary interactome mapping

K. Venkatesan et al.Dec 7, 2008
+37
A
J
K
Several attempts have been made to systematically map protein-protein interaction, or 'interactome', networks. However, it remains difficult to assess the quality and coverage of existing data sets. Here we describe a framework that uses an empirically-based approach to rigorously dissect quality parameters of currently available human interactome maps. Our results indicate that high-throughput yeast two-hybrid (HT-Y2H) interactions for human proteins are more precise than literature-curated interactions supported by a single publication, suggesting that HT-Y2H is suitable to map a significant portion of the human interactome. We estimate that the human interactome contains approximately 130,000 binary interactions, most of which remain to be mapped. Similar to estimates of DNA sequence data quality and genome size early in the Human Genome Project, estimates of protein interaction data quality and interactome size are crucial to establish the magnitude of the task of comprehensive human interactome mapping and to elucidate a path toward this goal.
0
Citation858
0
Save
0

Global protein function prediction from protein-protein interaction networks

Alexei Vázquez et al.May 12, 2003
A
A
A
A
Determining protein function is one of the most challenging problems of the post-genomic era. The availability of entire genome sequences and of high-throughput capabilities to determine gene coexpression patterns has shifted the research focus from the study of single proteins or small complexes to that of the entire proteome1. In this context, the search for reliable methods for assigning protein function is of primary importance. There are various approaches available for deducing the function of proteins of unknown function using information derived from sequence similarity or clustering patterns of co-regulated genes2,3, phylogenetic profiles4, protein-protein interactions (refs. 5–8 and Samanta, M.P. and Liang, S., unpublished data), and protein complexes9,10. Here we propose the assignment of proteins to functional classes on the basis of their network of physical interactions as determined by minimizing the number of protein interactions among different functional categories. Function assignment is proteome-wide and is determined by the global connectivity pattern of the protein network. The approach results in multiple functional assignments, a consequence of the existence of multiple equivalent solutions. We apply the method to analyze the yeast Saccharomyces cerevisiae protein-protein interaction network5. The robustness of the approach is tested in a system containing a high percentage of unclassified proteins and also in cases of deletion and insertion of specific protein interactions.
0
Citation698
0
Save
0

Large-scale topological and dynamical properties of the Internet

Alexei Vázquez et al.Jun 28, 2002
A
R
A
We study the large-scale topological and dynamical properties of real Internet maps at the autonomous system level, collected in a 3-yr time interval. We find that the connectivity structure of the Internet presents statistical distributions settled in a well-defined stationary state. The large-scale properties are characterized by a scale-free topology consistent with previous observations. Correlation functions and clustering coefficients exhibit a remarkable structure due to the underlying hierarchical organization of the Internet. The study of the Internet time evolution shows a growth dynamics with aging features typical of recently proposed growing network models. We compare the properties of growing network models with the present real Internet data analysis.
0

Modeling bursts and heavy tails in human dynamics

Alexei Vázquez et al.Mar 24, 2006
+3
Z
J
A
Current models of human dynamics, used from risk assessment to communications, assume that human actions are randomly distributed in time and thus well approximated by Poisson processes. We provide direct evidence that for five human activity patterns the timing of individual human actions follow non-Poisson statistics, characterized by bursts of rapidly occurring events separated by long periods of inactivity. We show that the bursty nature of human behavior is a consequence of a decision based queuing process: when individuals execute tasks based on some perceived priority, the timing of the tasks will be heavy tailed, most tasks being rapidly executed, while a few experiencing very long waiting times. We discuss two queueing models that capture human activity. The first model assumes that there are no limitations on the number of tasks an individual can hadle at any time, predicting that the waiting time of the individual tasks follow a heavy tailed distribution with exponent alpha=3/2. The second model imposes limitations on the queue length, resulting in alpha=1. We provide empirical evidence supporting the relevance of these two models to human activity patterns. Finally, we discuss possible extension of the proposed queueing models and outline some future challenges in exploring the statistical mechanisms of human dynamics.
0

Growing network with local rules: Preferential attachment, clustering hierarchy, and degree correlations

Alexei VázquezMay 7, 2003
A
The linear preferential attachment hypothesis has been shown to be quite successful in explaining the existence of networks with power-law degree distributions. It is then quite important to determine if this mechanism is the consequence of a general principle based on local rules. In this work it is claimed that an effective linear preferential attachment is the natural outcome of growing network models based on local rules. It is also shown that the local models offer an explanation for other properties like the clustering hierarchy and degree correlations recently observed in complex networks. These conclusions are based on both analytical and numerical results for different local rules, including some models already proposed in the literature.
0

Modeling of Protein Interaction Networks

Alexei Vázquez et al.Dec 11, 2002
A
A
A
A
We introduce a graph-generating model aimed at representing the evolution of protein interaction networks. The model is based on the hypothesis of evolution by duplication and divergence of the genes which produce proteins. The obtained graphs have multifractal properties recovering the absence of a characteristic connectivity as found in real data of protein interaction networks. The error tolerance of the model to random or targeted damage is in very good agreement with the behavior obtained in real protein network analyses. The proposed model is a first step in the identification of the evolutionary dynamics leading to the development of protein functions and interactions.
0
Citation445
0
Save
0

Epstein–Barr virus and virus human protein interaction maps

Michael Calderwood et al.Apr 20, 2007
+10
L
K
M
A comprehensive mapping of interactions among Epstein–Barr virus (EBV) proteins and interactions of EBV proteins with human proteins should provide specific hypotheses and a broad perspective on EBV strategies for replication and persistence. Interactions of EBV proteins with each other and with human proteins were assessed by using a stringent high-throughput yeast two-hybrid system. Overall, 43 interactions between EBV proteins and 173 interactions between EBV and human proteins were identified. EBV–EBV and EBV–human protein interaction, or “interactome” maps provided a framework for hypotheses of protein function. For example, LF2, an EBV protein of unknown function interacted with the EBV immediate early R transactivator (Rta) and was found to inhibit Rta transactivation. From a broader perspective, EBV genes can be divided into two evolutionary classes, “core” genes, which are conserved across all herpesviruses and subfamily specific, or “noncore” genes. Our EBV–EBV interactome map is enriched for interactions among proteins in the same evolutionary class. Furthermore, human proteins targeted by EBV proteins were enriched for highly connected or “hub” proteins and for proteins with relatively short paths to all other proteins in the human interactome network. Targeting of hubs might be an efficient mechanism for EBV reorganization of cellular processes.
0
Citation385
0
Save
0

Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity

Qasim Beg et al.Jul 25, 2007
+4
J
A
Q
The influence of the high intracellular concentration of macromolecules on cell physiology is increasingly appreciated, but its impact on system-level cellular functions remains poorly quantified. To assess its potential effect, here we develop a flux balance model of Escherichia coli cell metabolism that takes into account a systems-level constraint for the concentration of enzymes catalyzing the various metabolic reactions in the crowded cytoplasm. We demonstrate that the model's predictions for the relative maximum growth rate of wild-type and mutant E. coli cells in single substrate-limited media, and the sequence and mode of substrate uptake and utilization from a complex medium are in good agreement with subsequent experimental observations. These results suggest that molecular crowding represents a bound on the achievable functional states of a metabolic network, and they indicate that models incorporating this constraint can systematically identify alterations in cellular metabolism activated in response to environmental change.
0
Paper
Citation370
0
Save
Load More