CT
Christel Thauvin-Robinet
Author with expertise in Molecular Basis of Rett Syndrome and Related Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
224
h-index:
5
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Pathogenic variants in KMT2C result in a neurodevelopmental disorder distinct from Kleefstra and Kabuki syndromes

Dmitrijs Rots et al.Jul 1, 2024
Trithorax-related H3K4 methyltransferases, KMT2C and KMT2D, are critical epigenetic modifiers. Haploinsufficiency of KMT2C was only recently recognized as a cause of neurodevelopmental disorder (NDD), so the clinical and molecular spectrums of the KMT2C-related NDD (now designated as Kleefstra syndrome 2) are largely unknown. We ascertained 98 individuals with rare KMT2C variants, including 75 with protein-truncating variants (PTVs). Notably, ∼15% of KMT2C PTVs were inherited. Although the most highly expressed KMT2C transcript consists of only the last four exons, pathogenic PTVs were found in almost all the exons of this large gene. KMT2C variant interpretation can be challenging due to segmental duplications and clonal hematopoesis-induced artifacts. Using samples from 27 affected individuals, divided into discovery and validation cohorts, we generated a moderate strength disorder-specific KMT2C DNA methylation (DNAm) signature and demonstrate its utility in classifying non-truncating variants. Based on 81 individuals with pathogenic/likely pathogenic variants, we demonstrate that the KMT2C-related NDD is characterized by developmental delay, intellectual disability, behavioral and psychiatric problems, hypotonia, seizures, short stature, and other comorbidities. The facial module of PhenoScore, applied to photographs of 34 affected individuals, reveals that the KMT2C-related facial gestalt is significantly different from the general NDD population. Finally, using PhenoScore and DNAm signatures, we demonstrate that the KMT2C-related NDD is clinically and epigenetically distinct from Kleefstra and Kabuki syndromes. Overall, we define the clinical features, molecular spectrum, and DNAm signature of the KMT2C-related NDD and demonstrate they are distinct from Kleefstra and Kabuki syndromes highlighting the need to rename this condition.
0
Citation2
0
Save
0

Patients with complex and very-early-onset ATL1-related spastic paraplegia offer insights on genotype/phenotype correlations and support for autosomal recessive forms of SPG3A

Angélique Hamamie-Chaar et al.Jul 13, 2024
Abstract Spastic paraplegia type 3A (SPG3A) is the second most common form of hereditary spastic paraplegia (HSP). This autosomal-dominant-inherited motor disorder is caused by heterozygous variants in the ATL1 gene which usually presents as a pure childhood-onset spastic paraplegia. Affected individuals present muscle weakness and spasticity in the lower limbs, with symptom onset in the first decade of life. Individuals with SPG3A typically present a slow progression and remain ambulatory throughout their life. Here we report three unrelated individuals presenting with very-early-onset (before 7 months) complex, and severe HSP phenotypes (axial hypotonia, spastic quadriplegia, dystonia, seizures and intellectual disability). For 2 of the 3 patients, these phenotypes led to the initial diagnosis of cerebral palsy (CP). These individuals carried novel ATL1 pathogenic variants (a de novo ATL1 missense p.(Lys406Glu), a homozygous frameshift p.(Arg403Glufs*3) and a homozygous missense variant (p.Tyr367His)). The parents carrying the heterozygous frameshift and missense variants were asymptomatic. Through these observations, we increase the knowledge on genotype–phenotype correlations in SPG3A and offer additional proof for possible autosomal recessive forms of SPG3A, while raising awareness on these exceptional phenotypes. Their ability to mimic CP also implies that genetic testing should be considered for patients with atypical forms of CP, given the implications for genetic counseling.
0

The detection of a strong episignature for Chung–Jansen syndrome, partially overlapping with Börjeson–Forssman–Lehmann and White–Kernohan syndromes

Niels Vos et al.May 24, 2024
Abstract Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung–Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung–Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White–Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson–Forssman–Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung–Jansen, Börjeson–Forssman–Lehmann and White–Kernohan syndromes.
0

GPATCH11 variants cause mis-splicing and early-onset retinal dystrophy with neurological impairment

Andrea Zanetti et al.Nov 21, 2024
Here we conduct a study involving 12 individuals with retinal dystrophy, neurological impairment, and skeletal abnormalities, with special focus on GPATCH11, a lesser-known G-patch domain-containing protein, regulator of RNA metabolism. To elucidate its role, we study fibroblasts from unaffected individuals and patients carrying the recurring c.328+1 G > T mutation, which specifically removes the main part of the G-patch domain while preserving the other domains. Additionally, we generate a mouse model replicating the patients' phenotypic defects, including retinal dystrophy and behavioral abnormalities. Our results reveal a subcellular localization of GPATCH11 characterized by a diffuse presence in the nucleoplasm, as well as centrosomal localization, suggesting potential functions in RNA and cilia metabolism. Transcriptomic analysis performed on mouse retina detect dysregulation in both gene expression and splicing activity, impacting key processes such as photoreceptor light responses, RNA regulation, and primary cilia-associated metabolism. Proteomic analysis of mouse retina confirms the roles GPATCH11 plays in RNA processing, splicing, and transcription regulation, while also suggesting additional functions in synaptic plasticity and nuclear stress response. Our research provides insights into the diverse roles of GPATCH11 and identifies that the mutations affecting this protein are responsible for a recently characterized described syndrome. Here the authors identify GPATCH11 variants responsible for retinal dystrophy with neurological impairment and facial dysmorphy. They explore its function using a mouse model and demonstrate GPATCH11's involvement in RNA regulation and splicing.