JK
Jochen Kruppa
Author with expertise in Genomic Selection in Plant and Animal Breeding
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
991
h-index:
26
/
i10-index:
41
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated With Coronary Artery Disease

Tom Webb et al.Feb 1, 2017
Genome-wide association studies have so far identified 56 loci associated with risk of coronary artery disease (CAD). Many CAD loci show pleiotropy; that is, they are also associated with other diseases or traits. This study sought to systematically test if genetic variants identified for non-CAD diseases/traits also associate with CAD and to undertake a comprehensive analysis of the extent of pleiotropy of all CAD loci. In discovery analyses involving 42,335 CAD cases and 78,240 control subjects we tested the association of 29,383 common (minor allele frequency >5%) single nucleotide polymorphisms available on the exome array, which included a substantial proportion of known or suspected single nucleotide polymorphisms associated with common diseases or traits as of 2011. Suggestive association signals were replicated in an additional 30,533 cases and 42,530 control subjects. To evaluate pleiotropy, we tested CAD loci for association with cardiovascular risk factors (lipid traits, blood pressure phenotypes, body mass index, diabetes, and smoking behavior), as well as with other diseases/traits through interrogation of currently available genome-wide association study catalogs. We identified 6 new loci associated with CAD at genome-wide significance: on 2q37 (KCNJ13-GIGYF2), 6p21 (C2), 11p15 (MRVI1-CTR9), 12q13 (LRP1), 12q24 (SCARB1), and 16q13 (CETP). Risk allele frequencies ranged from 0.15 to 0.86, and odds ratio per copy of the risk allele ranged from 1.04 to 1.09. Of 62 new and known CAD loci, 24 (38.7%) showed statistical association with a traditional cardiovascular risk factor, with some showing multiple associations, and 29 (47%) showed associations at p < 1 × 10−4 with a range of other diseases/traits. We identified 6 loci associated with CAD at genome-wide significance. Several CAD loci show substantial pleiotropy, which may help us understand the mechanisms by which these loci affect CAD risk.
0
Citation242
0
Save
38

Revealing the Neurobiology Underlying Interpersonal Neural Synchronization with Multimodal Data Fusion

Leon Lotter et al.Jul 27, 2022
Abstract Humans synchronize with one another to foster successful interactions. Here, we use a multimodal data fusion approach with the aim of elucidating the neurobiological mechanisms by which interpersonal neural synchronization (INS) occurs. Our meta-analysis of 22 functional magnetic resonance imaging and 69 near-infrared spectroscopy hyperscanning experiments (740 and 3,721 subjects) revealed robust brain-regional correlates of INS in the right temporoparietal junction and left ventral prefrontal cortex. Integrating this meta-analytic information with public databases, biobehavioral and brain-functional association analyses suggested that INS involves sensory-integrative hubs with functional connections to mentalizing and attention networks. On the molecular and genetic levels, we found INS to be associated with GABAergic neurotransmission and layer IV/V neuronal circuits, protracted developmental gene expression patterns, and disorders of neurodevelopment. Although limited by the indirect nature of phenotypic-molecular association analyses, our findings generate new testable hypotheses on the neurobiological basis of INS.
0

A simple test identifies selection on complex traits in breeding and experimentally-evolved populations

Tim Beissinger et al.Dec 21, 2017
Important traits in agricultural, natural, and human populations are increasingly being shown to be under the control of many genes that individually contribute only a small proportion of genetic variation. However, the majority of modern tools in quantitative and population genetics, including genome wide association studies and selection mapping protocols, are designed to identify individual genes with large effects. We have developed an approach to identify traits that have been under selection and are controlled by large numbers of loci. In contrast to existing methods, our technique utilizes additive effects estimates from all available markers, and relates these estimates to allele frequency change over time. Using this information, we generate a composite statistic, denoted G ̂, which can be used to test for significant evidence of selection on a trait. Our test requires pre- and post-selection genotypic data but only a single time point with phenotypic information. Simulations demonstrate that Ĝ is powerful for identifying selection, particularly in situations where the trait being tested is controlled by many genes, which is precisely the scenario where classical approaches for selection mapping are least powerful. We apply this test to breeding populations of maize and chickens, where we demonstrate the successful identification of selection on traits that are documented to have been under selection.