PP
Päivi Pöhö
Author with expertise in Diversity and Function of Gut Microbiome
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(25% Open Access)
Cited by:
2,640
h-index:
12
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Molecular atlas of postnatal mouse heart development

Virpi Talman et al.Apr 23, 2018
Rationale: Mammals lose the ability to regenerate their hearts within one week after birth. During this regenerative window, cardiac energy metabolism shifts from glycolysis to fatty acid oxidation, and recent evidence suggests that metabolism may participate in controlling cardiomyocyte cell cycle. However, the molecular mechanisms mediating the loss of postnatal cardiac regeneration are not fully understood. Objective: This study aims at providing an integrated resource of mRNA, protein and metabolite changes in the neonatal heart to identify metabolism-related mechanisms associated with the postnatal loss of regenerative capacity. Methods and Results: Mouse ventricular tissue samples taken on postnatal days 1, 4, 9 and 23 (P01, P04, P09 and P23, respectively) were analyzed with RNA sequencing (RNAseq) and global proteomics and metabolomics. Differential expression was observed for 8547 mRNAs and for 1199 of the 2285 quantified proteins. Furthermore, 151 metabolites with significant changes were identified. Gene ontology analysis, KEGG pathway analysis and fuzzy c-means clustering were used to identify biological processes and metabolic pathways either up- or downregulated on all three levels. Among these were branched chain amino acid degradation (upregulated at P23) and production of free saturated and monounsaturated medium- to long-chain fatty acids (upregulated at P04 and P09; downregulated at P23). Moreover, the HMG-CoA synthase (HMGCS)-mediated mevalonate pathway and ketogenesis were transiently activated. Pharmacological inhibition of HMGCS in primary neonatal rat ventricular cardiomyocytes reduced the percentage of BrdU+ cardiomyocytes, providing evidence that the mevalonate and ketogenesis routes may participate in regulating cardiomyocyte cell cycle. Conclusions: This is the first systems-level resource combining data from genome-wide transcriptomics with global quantitative proteomics and untargeted metabolomics analyses of the mouse heart throughout the early postnatal period. This integrated multi-level data of molecular changes associated with the loss of cardiac regeneration may open up new possibilities for the development of regenerative therapies.
0

Maturation of Neuronal Activity in Caudalized Human Brain Organoids

S. MOLCHANOVA et al.Sep 24, 2019
Human brain organoids are an emerging tool to study functional neuronal networks in health and disease. A critical challenge is the engineering of brain organoids with defined regional identity and developmental stage. Here we describe a protocol for generating hindbrain-like organoids from human pluripotent stem cells. We first generated a stable pool of caudalized stem cells that expressed hindbrain identity transcription factors and differentiated into tissue containing neurons and astrocytes. After maturation, caudalized brain organoids presented synaptically connected networks consisting of glutamate-, GABA-, and serotoninergic postmitotic neurons. These mature neurons displayed electric properties and dendritic trees resembling medulla oblongata neurons. They fired spontaneous and evoked repetitive action potentials, released serotonin and displayed excitatory and inhibitory synaptic currents, functionally resembling the activity patterns observed in normal human fetal brain. Reminiscent of infected human fetal brain, infection with Zika virus hampered organoid development, while the treatment with anticonvulsant drugs - carbamazepine and valproic acid - reduced organoid growth. Neuronal maturation also occurred in the grafted organoids in vivo. In conclusion, our approach enables efficient derivation of caudalized neuronal stem cells that differentiate into mature and functional neurons in organoids with hindbrain identity following human developmental trajectory. The organoids provide excellent model to study congenital abnormalities in brain development and for drug testing.