SN
Susana Navarro
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(43% Open Access)
Cited by:
1,091
h-index:
22
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells

Ángel Raya et al.May 31, 2009
The generation of induced pluripotent stem (iPS) cells has enabled the derivation of patient-specific pluripotent cells and provided valuable experimental platforms to model human disease. Patient-specific iPS cells are also thought to hold great therapeutic potential, although direct evidence for this is still lacking. Here we show that, on correction of the genetic defect, somatic cells from Fanconi anaemia patients can be reprogrammed to pluripotency to generate patient-specific iPS cells. These cell lines appear indistinguishable from human embryonic stem cells and iPS cells from healthy individuals. Most importantly, we show that corrected Fanconi-anaemia-specific iPS cells can give rise to haematopoietic progenitors of the myeloid and erythroid lineages that are phenotypically normal, that is, disease-free. These data offer proof-of-concept that iPS cell technology can be used for the generation of disease-corrected, patient-specific cells with potential value for cell therapy applications. The feasibility of deriving patient-specific iPS cells and their value as experimental models for specific diseases were reported almost a year ago. Patient-specific iPS cells are also thought to have great therapeutic potential, though direct evidence was lacking. Raya et al. now show that iPS cells from Fanconi anaemia patients can, after correction of the genetic defect, be reprogrammed to generate patient-specific iPS cells that can give rise to disease-free haematopoietic progenitors of myeloid and erythroid lineages. These cells have potential value for cell therapy. The generation of patient-specific induced pluripotent stem cells (iPS cells) is thought to hold great therapeutic potential. Here, somatic cells from Fanconi anaemia patients are reprogrammed to pluripotency after correction of the genetic defect, generating patient-specific iPS cells.
0
Citation690
0
Save
0

Insertional Transformation of Hematopoietic Cells by Self-inactivating Lentiviral and Gammaretroviral Vectors

Ute Modlich et al.Aug 11, 2009
Gene transfer vectors may cause clonal imbalance and even malignant cell transformation by insertional upregulation of proto-oncogenes. Lentiviral vectors (LV) with their preferred integration in transcribed genes are considered less genotoxic than gammaretroviral vectors (GV) with their preference for integration next to transcriptional start sites and regulatory gene regions. Using a sensitive cell culture assay and a series of self-inactivating (SIN) vectors, we found that the lentiviral insertion pattern was approximately threefold less likely than the gammaretroviral to trigger transformation of primary hematopoietic cells. However, lentivirally induced mutants also showed robust replating, in line with the selection for common insertion sites (CIS) in the first intron of the Evi1 proto-oncogene. This potent proto-oncogene thus represents a CIS for both GV and LV, despite major differences in their integration mechanisms. Altering the vectors' enhancer–promoter elements had a greater effect on safety than the retroviral insertion pattern. Clinical grade LV expressing the Wiskott–Aldrich syndrome (WAS) protein under control of its own promoter had no transforming potential. Mechanistic studies support the conclusion that enhancer-mediated gene activation is the major cause for insertional transformation of hematopoietic cells, opening rational strategies for risk prevention.
0
Citation369
0
Save
2

Mosaicism in Fanconi anemia: concise review and evaluation of published cases with focus on clinical course of blood count normalization

Eileen Nicoletti et al.Feb 17, 2020
Abstract Fanconi anemia (FA) is a DNA repair disorder resulting from mutations in genes encoding for FA DNA repair complex components and is characterized by variable congenital abnormalities, bone marrow failure (BMF), and high incidences of malignancies. FA mosaicism arises from reversion or other compensatory mutations in hematopoietic cells and may be associated with BMF reversal and decreased blood cell sensitivity to DNA-damaging agents (clastogens); this sensitivity is a phenotypic and diagnostic hallmark of FA. Uncertainty regarding the clinical significance of FA mosaicism persists; in some cases, patients have survived multiple decades without BMF or hematologic malignancy, and in others hematologic failure occurred despite the presence of clastogen-resistant cell populations. Assessment of mosaicism is further complicated because clinical evaluation is frequently based on clastogen resistance in lymphocytes, which may arise from reversion events both in lymphoid-specific lineages and in more pluripotent hematopoietic stem/progenitor cells (HSPCs). In this review, we describe diagnostic methods and outcomes in published mosaicism series, including the substantial intervals (1–6 years) over which blood counts normalized, and the relatively favorable clinical course in cases where clastogen resistance was demonstrated in bone marrow progenitors. We also analyzed published FA mosaic cases with emphasis on long-term clinical outcomes when blood count normalization was identified. Blood count normalization in FA mosaicism likely arises from reversion events in long-term primitive HSPCs and is associated with low incidences of BMF or hematologic malignancy. These observations have ramifications for current investigational therapeutic programs in FA intended to enable gene correction in long-term repopulating HSPCs.
2
Citation31
1
Save
0

Therapeutic gene editing in hematopoietic progenitor cells from a mouse model of Fanconi anemia

MJ Pino-Barrio et al.Jul 5, 2018
The promising ability to genetically modify hematopoietic stem and progenitor cells (HSPCs) by precise gene editing remains challenging due to their sensitivity and poor permissiveness. This represents the first evidence of implementing a gene editing strategy in a murine safe harbor locus that phenotypically corrects primary cells derived from a mouse model of Fanconi anemia (FA). By co-delivering TALENs and a donor therapeutic FANCA cassette template to the Mbs85 locus (ortholog of the hAAVS1 safe harbor locus), we achieved efficient gene targeting (23%) in FA mouse embryonic fibroblasts (MEFs). This resulted in the phenotypic correction of these cells, as revealed by the improvement of their hypersensitivity to mitomycinC. Moreover, robust evidence of targeted integration was observed in murine WT and FA-A hematopoietic progenitor cells (HPC) reaching mean targeted integration values of 20.98% and 16.33% respectively, with phenotypic correction of FA HPCs. Overall, our results demonstrate the feasibility of implementing a therapeutic targeted integration strategy in a murine safe harbor locus, such as the Mbs85 gene, of MEFs and murine HPC from a FA mouse model.