Abstract The micronutrient vitamin B12 is an essential cofactor for two enzymes: methionine synthase, which plays a key role in the one-carbon cycle; and methylmalonyl-CoA mutase, an enzyme in a pathway that breaks down branched-chain amino acids and odd-chain fatty acids. A second, vitamin B12-independent pathway that degrades methylmalonyl-CoA and its upstream metabolite propionic acid was recently described in Caenorhabditis elegans , the propionate shunt pathway. Activation of five shunt pathway genes in response to low vitamin B12 availability or high propionic acid levels is accomplished by a transcriptional regulatory mechanism involving two nuclear hormone receptors, NHR-10 and NHR-68. Here, we report that the C. elegans Mediator subunit mdt-15 is also essential for the activation of the propionate shunt pathway genes, likely by acting as a transcriptional coregulator for NHR-10. C. elegans mdt-15 mutants fed a low vitamin B12 diet have transcriptomes resembling those of wild-type worms fed a high vitamin B12 diet, with low expression of the shunt genes. Phenotypically, the embryonic lethality of mdt-15 mutants is specifically rescued by diets high in vitamin B12, but not by dietary polyunsaturated fatty acids, which rescue many other phenotypes of the mdt-15 mutants. Finally, NHR-10 binds to MDT-15 in yeast-two-hybrid assays, and the transcriptomes of nhr-10 mutants resemble those of mdt-15 mutants. Our data show that MDT-15 is a key coregulator for an NHR regulating propionic acid detoxification, adding to roles played by NHR:MDT-15 partnerships in metabolic regulation and pinpointing vitamin B12 availability as a requirement for mdt-15 dependent embryonic development.