RS
Richard Spelman
Author with expertise in Genomic Selection in Plant and Animal Breeding
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
2,594
h-index:
32
/
i10-index:
54
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Positional Candidate Cloning of a QTL in Dairy Cattle: Identification of a Missense Mutation in the Bovine DGAT1 Gene with Major Effect on Milk Yield and Composition

Bernard Grisart et al.Feb 1, 2002
+10
F
W
B
We recently mapped a quantitative trait locus (QTL) with a major effect on milk composition—particularly fat content—to the centromeric end of bovine chromosome 14. We subsequently exploited linkage disequilibrium to refine the map position of this QTL to a 3-cM chromosome interval bounded by microsatellite markers BULGE13 and BULGE09 . We herein report the positional candidate cloning of this QTL, involving (1) the construction of a BAC contig spanning the corresponding marker interval, (2) the demonstration that a very strong candidate gene, acylCoA:diacylglycerol acyltransferase ( DGAT1 ), maps to that contig, and (3) the identification of a nonconservative K232A substitution in the DGAT1 gene with a major effect on milk fat content and other milk characteristics. [The sequence data described in this paper have been submitted to the GenBank data library under accession number AY065621 .]
0
Citation924
0
Save
0

Genome-Wide Survey of SNP Variation Uncovers the Genetic Structure of Cattle Breeds

Richard Gibbs et al.Apr 23, 2009
+87
C
J
R
A survey of genetic diversity of cattle suggests two domestication events in Asia and selection by husbandry.
0
Citation796
0
Save
0

Linkage Disequilibrium and Persistence of Phase in Holstein–Friesian, Jersey and Angus Cattle

A.P.W. Roos et al.Jul 1, 2008
M
R
B
A
When a genetic marker and a quantitative trait locus (QTL) are in linkage disequilibrium (LD) in one population, they may not be in LD in another population or their LD phase may be reversed. The objectives of this study were to compare the extent of LD and the persistence of LD phase across multiple cattle populations. LD measures r and r(2) were calculated for syntenic marker pairs using genomewide single-nucleotide polymorphisms (SNP) that were genotyped in Dutch and Australian Holstein-Friesian (HF) bulls, Australian Angus cattle, and New Zealand Friesian and Jersey cows. Average r(2) was approximately 0.35, 0.25, 0.22, 0.14, and 0.06 at marker distances 10, 20, 40, 100, and 1000 kb, respectively, which indicates that genomic selection within cattle breeds with r(2) >or= 0.20 between adjacent markers would require approximately 50,000 SNPs. The correlation of r values between populations for the same marker pairs was close to 1 for pairs of very close markers (<10 kb) and decreased with increasing marker distance and the extent of divergence between the populations. To find markers that are in LD with QTL across diverged breeds, such as HF, Jersey, and Angus, would require approximately 300,000 markers.
0
Citation465
0
Save
0

Molecular Dissection of a Quantitative Trait Locus: A Phenylalanine-to-Tyrosine Substitution in the Transmembrane Domain of the Bovine Growth Hormone Receptor Is Associated With a Major Effect on Milk Yield and Composition

Sarah Blott et al.Jan 1, 2003
+16
S
J
S
Abstract We herein report on our efforts to improve the mapping resolution of a QTL with major effect on milk yield and composition that was previously mapped to bovine chromosome 20. By using a denser chromosome 20 marker map and by exploiting linkage disequilibrium using two distinct approaches, we provide strong evidence that a chromosome segment including the gene coding for the growth hormone receptor accounts for at least part of the chromosome 20 QTL effect. By sequencing individuals with known QTL genotype, we identify an F to Y substitution in the transmembrane domain of the growth hormone receptor gene that is associated with a strong effect on milk yield and composition in the general population.
0
Citation409
0
Save
0

Multiple QTL underlie milk phenotypes at the CSF2RB locus

Thomas Lopdell et al.Sep 12, 2018
+7
C
K
T
Background: Bovine milk provides an important source of nutrition in much of the Western world, forming components of many food products. Over many years, artificial selection has substantially improved milk production by cows. However, the genes underlying milk production quantitative trait loci (QTL) remain relatively poorly characterised. Here, we investigate a previously-reported QTL located at the CSF2RB locus, for several milk production phenotypes, to better understand its underlying genetic and molecular causes. Results: Using a population of 29,350 taurine dairy cattle, we conducted association analyses for milk yield and composition traits, and identified highly significant QTL for milk yield, milk fat concentration, and milk protein concentration. Strikingly, protein concentration and milk yield appear to show co-located yet genetically distinct QTL. To attempt to understand the molecular mechanisms that might be mediating these effects, gene expression data were used to investigate eQTL for eleven genes in the broader interval. This analysis highlighted genetic impacts on CSF2RB and NCF4 expression that share similar association signatures to those observed for lactation QTL, strongly implicating one or both of these genes as the cause of these effects. Using the same gene expression dataset representing 357 lactating cows, we also identified 38 novel RNA editing sites in the 3' UTR of CSF2RB transcripts. The extent to which two of these sites were edited also appears to be genetically co-regulated with lactation QTL, highlighting a further layer of regulatory complexity implicating the CSF2RB gene. Conclusions: This chromosome 5 locus presents a diversity of molecular and lactation QTL, likely representing multiple overlapping effects that, at a minimum, highlight the CSF2RB gene as having a causal role in these processes.
0

A new mechanism for a familiar mutation - bovine DGAT1 K232A modulates gene expression through multi-junction exon splice enhancement

Tania Fink et al.Feb 5, 2020
+6
K
T
T
The DGAT1 gene encodes an enzyme responsible for catalysing the terminal reaction in mammary triglyceride synthesis, and underpins a well-known pleiotropic quantitative trait locus (QTL) with a large influence on milk composition phenotypes. Since first described over 15 years ago, a protein-coding variant K232A has been assumed as the causative variant underlying these effects, following in-vitro studies that demonstrated differing levels of triglyceride synthesis between the two protein isoforms. In the current study, we used a large RNAseq dataset to re-examine the underlying mechanisms of this large milk production QTL, and hereby report novel expression-based functions of the chr14 g.1802265AA>GC variant that encodes the DGAT1 K232A substitution. Using expression QTL (eQTL) mapping, we demonstrate a highly-significant mammary eQTL for DGAT1 , where the K232A mutation appears as one of the top associated variants for this effect. By conducting in vitro expression and splicing experiments in bovine mammary cell culture, we further show modulation of splicing efficiency by this mutation, likely through disruption of an exon splice enhancer as a consequence of the allele encoding the 232A variant. Although the relative contributions of the enzymatic and transcription-based mechanisms now attributed to K232A remain unclear, these results suggest that transcriptional impacts contribute to the diversity of lactation effects observed at this locus.
1

Non-additive QTL mapping of lactation traits in 124,000 sequence-imputed cattle reveals novel recessive loci

Edwardo Reynolds et al.Sep 1, 2021
+13
Y
T
E
Abstract Deleterious recessive conditions have primarily been studied in a Mendelian disease context. Recently, several large effect, deleterious recessive mutations were discovered via non-additive GWAS of quantitative growth and developmental traits in cattle. This showed quantitative traits can be used as proxies of genetic disorders if they are indicative of whole animal health status and susceptible to underlying genetic conditions. Lactation traits might also reflect genetic disorders in cattle, given the increased energy demands of lactation and the substantial stresses imposed on the animal. Here, we report a screen of over 124,000 cows for recessive effects based on lactation traits. We discovered novel loci associated with five large recessive impacts on milk yield traits represented by missense variants (DOCK8, IL4R, KIAA0556, and SLC25A4) or premature stop variants (ITGAL, LRCH4, and RBM34) as candidate causal mutations. On milk composition traits, we identified several small effect dominance contributions to previously reported additive QTL. In contrasting analyses of milk yield and milk composition phenotypes, we note differing genetic architectures. Milk yield phenotypes presented lower heritabilities and fewer additive QTL, but higher non-additive genetic variance and a higher proportion of loci exhibiting dominance compared to milk composition phenotypes. Large-effect recessive QTL are segregating at surprisingly high frequencies in cattle. We speculate that the differences in genetic architecture between milk yield and milk composition phenotypes derive from underlying dissimilarities in the cellular and molecular representation of these traits. Lactation yields may act as a better proxy than milk composition traits for a wide range of underlying biological disorders affecting animal fitness