AM
Adam Margolin
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
13,141
h-index:
35
/
i10-index:
41
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context

Adam Margolin et al.Mar 1, 2006
Elucidating gene regulatory networks is crucial for understanding normal cell physiology and complex pathologic phenotypes. Existing computational methods for the genome-wide "reverse engineering" of such networks have been successful only for lower eukaryotes with simple genomes. Here we present ARACNE, a novel algorithm, using microarray expression profiles, specifically designed to scale up to the complexity of regulatory networks in mammalian cells, yet general enough to address a wider range of network deconvolution problems. This method uses an information theoretic approach to eliminate the majority of indirect interactions inferred by co-expression methods. We prove that ARACNE reconstructs the network exactly (asymptotically) if the effect of loops in the network topology is negligible, and we show that the algorithm works well in practice, even in the presence of numerous loops and complex topologies. We assess ARACNE's ability to reconstruct transcriptional regulatory networks using both a realistic synthetic dataset and a microarray dataset from human B cells. On synthetic datasets ARACNE achieves very low error rates and outperforms established methods, such as Relevance Networks and Bayesian Networks. Application to the deconvolution of genetic networks in human B cells demonstrates ARACNE's ability to infer validated transcriptional targets of the cMYC proto-oncogene. We also study the effects of misestimation of mutual information on network reconstruction, and show that algorithms based on mutual information ranking are more resilient to estimation errors. ARACNE shows promise in identifying direct transcriptional interactions in mammalian cellular networks, a problem that has challenged existing reverse engineering algorithms. This approach should enhance our ability to use microarray data to elucidate functional mechanisms that underlie cellular processes and to identify molecular targets of pharmacological compounds in mammalian cellular networks.
0
Citation2,371
0
Save
0

NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth

Teresa Palomero et al.Nov 18, 2006
The NOTCH1 signaling pathway directly links extracellular signals with transcriptional responses in the cell nucleus and plays a critical role during T cell development and in the pathogenesis over 50% of human T cell lymphoblastic leukemia (T-ALL) cases. However, little is known about the transcriptional programs activated by NOTCH1. Using an integrative systems biology approach we show that NOTCH1 controls a feed-forward-loop transcriptional network that promotes cell growth. Inhibition of NOTCH1 signaling in T-ALL cells led to a reduction in cell size and elicited a gene expression signature dominated by down-regulated biosynthetic pathway genes. By integrating gene expression array and ChIP-on-chip data, we show that NOTCH1 directly activates multiple biosynthetic routes and induces c-MYC gene expression. Reverse engineering of regulatory networks from expression profiles showed that NOTCH1 and c-MYC govern two directly interconnected transcriptional programs containing common target genes that together regulate the growth of primary T-ALL cells. These results identify c-MYC as an essential mediator of NOTCH1 signaling and integrate NOTCH1 activation with oncogenic signaling pathways upstream of c-MYC.
0
Citation786
0
Save
0

Valection: Design Optimization for Validation and Verification Studies

Christopher Cooper et al.Jan 28, 2018
Background: Platform-specific error profiles necessitate confirmatory studies where predictions made on data generated using one technology are additionally verified by processing the same samples on an orthogonal technology. In disciplines that rely heavily on high-throughput data generation, such as genomics, reducing the impact of false positive and false negative rates in results is a top priority. However, verifying all predictions can be costly and redundant, and testing a subset of findings is often used to estimate the true error profile. To determine how to create subsets of predictions for validation that maximize inference of global error profiles, we developed Valection, a software program that implements multiple strategies for the selection of verification candidates. Results: To evaluate these selection strategies, we obtained 261 sets of somatic mutation calls from a single-nucleotide variant caller benchmarking challenge where 21 teams competed on whole-genome sequencing datasets of three computationally-simulated tumours. By using synthetic data, we had complete ground truth of the tumours' mutations and, therefore, we were able to accurately determine how estimates from the selected subset of verification candidates compared to the complete prediction set. We found that selection strategy performance depends on several verification study characteristics. In particular the verification budget of the experiment (i.e. how many candidates can be selected) is shown to influence estimates. Conclusions: The Valection framework is flexible, allowing for the implementation of additional selection algorithms in the future. Its applicability extends to any discipline that relies on experimental verification and will benefit from the optimization of verification candidate selection.