SM
Stephen Meredith
Author with expertise in Mechanisms of Alzheimer's Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
3,312
h-index:
47
/
i10-index:
91
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Amino acid analysis by reverse-phase high-performance liquid chromatography: Precolumn derivatization with phenylisothiocyanate

Robert Heinrikson et al.Jan 1, 1984
Methods for the quantitative derivatization of amino acids with phenylisothiocyanate and for the separation and quantitation of the resulting phenylthiocarbamyl derivatives by reverse-phase high-performance liquid chromatography are described. Phenylthiocarbamylation of amino acids proceeds smoothly in 5 to 10 min at room temperature. Coupling solvents, reagent, and some byproducts are removed by rotary evaporation under high vacuum, and the phenylthiocarbamyl derivatives are dissolved in 0.05 m ammonium acetate, pH 6.8, for injection onto the octyl or octadecylsilyl reverse-phase column. Columns are equilibrated with the same solvent and the effluent stream is monitored continuously at 254 nm for detection of the amino acid derivatives. Elution of all of the phenylthiocarbamyl amino acids is achieved in about 30 min utilizing gradients of increasing concentrations of ammonium acetate and acetonitrile or methanol. This approach to amino acid analysis offers select advantages, both with respect to methods which employ reverse-phase separation of prederivatized samples and to the classical ion-exchance procedure. All amino acids, including proline, are converted quantitatively to phenylthiocarbamyl compounds and these are stable enough to eliminate any need for in-line derivatization. Furthermore, results comparable in sensitivity and precision to those obtained by state-of-the-art ion-exchange analyzers may be generated with equipment that need not be dedicated to a single application.
0

Propagating structure of Alzheimer’s β-amyloid (10–35) is parallel β-sheet with residues in exact register

Tammie Benzinger et al.Nov 10, 1998
The pathognomonic plaques of Alzheimer’s disease are composed primarily of the 39- to 43-aa β-amyloid (Aβ) peptide. Crosslinking of Aβ peptides by tissue transglutaminase (tTg) indicates that Gln 15 of one peptide is proximate to Lys 16 of another in aggregated Aβ. Here we report how the fibril structure is resolved by mapping interstrand distances in this core region of the Aβ peptide chain with solid-state NMR. Isotopic substitution provides the source points for measuring distances in aggregated Aβ. Peptides containing a single carbonyl 13 C label at Gln 15 , Lys 16 , Leu 17 , or Val 18 were synthesized and evaluated by NMR dipolar recoupling methods for the measurement of interpeptide distances to a resolution of 0.2 Å. Analysis of these data establish that this central core of Aβ consists of a parallel β-sheet structure in which identical residues on adjacent chains are aligned directly, i.e., in register. Our data, in conjunction with existing structural data, establish that the Aβ fibril is a hydrogen-bonded, parallel β-sheet defining the long axis of the Aβ fibril propagation.
0

Seeded growth of β-amyloid fibrils from Alzheimer's brain-derived fibrils produces a distinct fibril structure

Anant Paravastu et al.Apr 18, 2009
Studies by solid-state nuclear magnetic resonance (NMR) of amyloid fibrils prepared in vitro from synthetic 40-residue beta-amyloid (Abeta(1-40)) peptides have shown that the molecular structure of Abeta(1-40) fibrils is not uniquely determined by amino acid sequence. Instead, the fibril structure depends on the precise details of growth conditions. The molecular structures of beta-amyloid fibrils that develop in Alzheimer's disease (AD) are therefore uncertain. We demonstrate through thioflavin T fluorescence and electron microscopy that fibrils extracted from brain tissue of deceased AD patients can be used to seed the growth of synthetic Abeta(1-40) fibrils, allowing preparation of fibrils with isotopic labeling and in sufficient quantities for solid-state NMR and other measurements. Because amyloid structures propagate themselves in seeded growth, as shown in previous studies, the molecular structures of brain-seeded synthetic Abeta(1-40) fibrils most likely reflect structures that are present in AD brain. Solid-state (13)C NMR spectra of fibril samples seeded with brain material from two AD patients were found to be nearly identical, indicating the same molecular structures. Spectra of an unseeded control sample indicate greater structural heterogeneity. (13)C chemical shifts and other NMR data indicate that the predominant molecular structure in brain-seeded fibrils differs from the structures of purely synthetic Abeta(1-40) fibrils that have been characterized in detail previously. These results demonstrate a new approach to detailed structural characterization of amyloid fibrils that develop in human tissue, and to investigations of possible correlations between fibril structure and the degree of cognitive impairment and neurodegeneration in AD.
0

Aβ Fibrils Can Act as Aqueous Pores: a Molecular Dynamics Study

Sashin Natesh et al.Sep 14, 2018
Aggregation of Aβ peptides is important in the etiology of Alzheimer's Disease (AD), an increasingly prevalent neurodegenerative disease. We ran multiple ~ 300 ns all-atom explicit solvent molecular dynamics (MD) simulations starting from three NMR-based structural models of Aβ(1-40 residues) fibrils having 2-fold (pdb code 2LMN) or 3-fold rotational symmetry (2LMP, and 2M4J). The 2M4J structure is based on an AD brain-seeded fibril whereas 2LMP and 2LMN represent two all-synthetic fibrils. Fibrils are constructed to contain either 6 or an infinite number of layers made using periodic images. The 6 layer fibrils partially unravel over the simulation time, mainly at their ends, while infinitely long fibrils do not. Once formed, the D23-K28 salt bridges are very stable and form within and between chains. Fibrils tend to retain (2LMN and 2LMP) or develop (2M4J) a "stagger" or register shift of beta-strands along the fibril axis. The brain-seeded fibril rapidly develops gaps at the sides of the fibril, which allows bidirectional flow of water and ions from the bulk phase in and out the central longitudinal core of the fibril. Similar but less marked changes were also observed for the 2LMP fibrils. The residues defining the gaps largely coincide with those demonstrated to have relatively rapid Hydrogen-Deuterium exchange in solid state NMR studies. These observations suggest that Aβ(1-40 residues) fibrils may act as aqueous pores that might disrupt water and ion fluxes if inserted into a cell membrane.