BD
Batsal Devkota
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
756
h-index:
23
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Rapid and Accurate Interpretation of Clinical Exomes Using Phenoxome: a Computational Phenotype-driven Approach

Chao Wu et al.Mar 2, 2018
Clinical exome sequencing (CES) has become the preferred diagnostic platform for complex pediatric disorders with suspected monogenic etiologies, solving up to 20%-50% of cases depending on indication. Despite rapid advancements in CES analysis, the major challenge still resides in identifying the casual variants among the thousands of variants detected during CES testing, and thus establishing a molecular diagnosis. To improve the clinical exome diagnostic efficiency, we developed Phenoxome, a robust phenotype-driven model that adopts a network-based approach to facilitate automated variant prioritization and subsequent classification. Phenoxome dissects the phenotypic manifestation of a patient in conjunction with their genomic profile to filter and then prioritize putative pathogenic variants. To validate our method, we have compiled a clinical cohort of 105 positive patient samples (i.e. at least one reported pathogenic variant) that represent a wide range of genetic heterogeneity from The Children's Hospital of Philadelphia. Our approach identifies the causative variants within the top 5, 10, or 25 candidates in more than 50%, 71%, or 88% of these patient samples respectively. Furthermore, we show that our method is optimized for clinical testing by yielding superior ranking of the pathogenic variants compared to current state-of-art methods. The web application of Phenoxome is available to the public at http://phenoxome.chop.edu/.