JD
Jingao Dong
Author with expertise in Genetics and Epidemiology of Plant Pathogens
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
8
(25% Open Access)
Cited by:
1
h-index:
21
/
i10-index:
62
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The genome sequencing and comparative genomics analysis of Rhizoctonia solani reveals a novel effector family owning a uinque domain in Basidiomycetes

Yuwei Liu et al.Aug 3, 2024
Rhizoctonia solani is a soil-borne pathogen with 14 anastomosis groups (AGs), and different subgroups are genetically diverse. However, the genetic factors contributing to the pathogenicity of the fungus have not been well characterized. In this study, the genome of R. solani AG1-ZJ was sequenced. As the result, a 41.57 Mb draft genome containing 12,197 putative coding genes was obtained. Comparative genomic analysis of 11 different AGs revealed conservation and unique characteristics between the AGs. Furthermore, a novel effector family containing a 68 amino acid conserved domain unique in basidiomycetous fungi was characterized. Two effectors containing the conserved domain in AG4-JY were identified, and named as RsUEB1 and RsUEB2. Furthermore, the spray-induced gene silencing strategy was used to generate a dsRNA capable of silencing the conserved domain sequence of RsUEB1 and RsUEB2. This dsRNA can significantly reduce the expression of RsUEB1 and RsUEB2 and the pathogenicity of AG4-JY on foxtail millet, maize, rice and wheat. In conclusion, this study provides significant insights into the pathogenicity mechanisms of R. solani. The identification of the conserved domain and the successful use of dsRNA silencing of the gene containing the conserved domain will offer a new strategy for controlling sheath blight in cereal crops.
0
Citation1
0
Save
0

Heterologous expression of Stlac2, a laccase isozyme of Setosphearia turcica, and the ability of decolorization of malachite green

Ning Liu et al.Jan 29, 2019
Laccases can catalyze monoelectronic oxidation and have shown to have an increasing value in industrial application. In this study, as identified by Native-PAGE and ESI-MS/MS, ascomycetous fungus Setosphaeria turcica produced three laccase isozymes: Stlac1, Stlac2, and Stlac6. Stlac2 was heterologously expressed in both eukaryotic and prokaryotic expression systems. The eukaryotic recombinant Stlac2 expressed in Pichia pastoris was inactive, and also showed a higher molecular weight than predicted because of glycosylation. The depression of laccase activity was attributable to the incorrect glycosylation at Asn97. Stlac2 expressed in Escherichia coli and after being renaturated from the inclusion body, the recombinant Stlac2 exhibited activity of 28.23 U/mg with 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as the substrate. The highest activity was observed at pH of 4.5 and the temperature of 60 °C. The activity of recombinant Stlac2 was inhibited by 10 mM Na+, Mg2+, Ca2+, Mn2+, and increased by 10 mM of Fe3+ with a relatively activity of 315% compared with no addition. Cu2+ did not affect enzyme activity. Recombinant Stlac2 was capable of decolorizing 67.08% of 20 mg/L malachite green in 15 min without any mediators. It is suggested that Stlac2 has potential industrial applications.
1

Cell- and non-cell-autonomous ARF3 coordinates meristem proliferation and organ patterning in Arabidopsis

Ke Zhang et al.Jan 13, 2022
In cell-cell communication, non-cell-autonomous transcription factors play vital roles in controlling plant stem cell fate. We previously reported that AUXIN RESPONSE FACTOR 3 (ARF3), a member of the ARF family with critical roles in floral meristem maintenance and determinacy, has a distinct accumulation pattern that differs from the expression domain of its encoding gene in the shoot apical meristem (SAM). However, the biological meaning of this difference is obscure. Here, we demonstrate that ARF3 expression is mainly activated at the periphery of the SAM by auxin, where ARF3 cell-autonomously regulates the expression of meristem-organ boundary-specific genes, such as CUP-SHAPED COTYLEDON1-3 (CUC1-3), BLADE ON PETIOLE1-2 (BOP1-2) and TARGETS UNDER ETTIN CONTROL3 (TEC3) to determine organ patterning. We also show that ARF3 is translocated into the organizing center, where it represses cytokinin activity and WUSCHEL expression to regulate meristem activity non-cell-autonomously. Therefore, ARF3 acts as a molecular link that mediates the interaction of auxin and cytokinin signaling in the SAM while coordinating the balance between meristem maintenance and organogenesis. Our findings reveal an ARF3-mediated coordination mechanism through cell-cell communication in dynamic SAM maintenance.