SY
Shunping Yan
Author with expertise in Mechanisms of Plant Immune Response
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
2,137
h-index:
17
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants

Zheng Fu et al.May 15, 2012
Salicylic acid (SA) is a plant immune signal produced after pathogen challenge to induce systemic acquired resistance. It is the only major plant hormone for which the receptor has not been firmly identified. Systemic acquired resistance in Arabidopsis requires the transcription cofactor nonexpresser of PR genes 1 (NPR1), the degradation of which acts as a molecular switch. Here we show that the NPR1 paralogues NPR3 and NPR4 are SA receptors that bind SA with different affinities. NPR3 and NPR4 function as adaptors of the Cullin 3 ubiquitin E3 ligase to mediate NPR1 degradation in an SA-regulated manner. Accordingly, the Arabidopsis npr3 npr4 double mutant accumulates higher levels of NPR1, and is insensitive to induction of systemic acquired resistance. Moreover, this mutant is defective in pathogen effector-triggered programmed cell death and immunity. Our study reveals the mechanism of SA perception in determining cell death and survival in response to pathogen challenge. Plant resistance to pathogen challenge is thought to be mediated through salicylic acid (SA) signalling; here NPR3 and NPR4, paralogues of the transcription cofactor NPR1, are identified as receptors of SA. Salicylic acid is the only major plant hormone for which a receptor has not been firmly identified. It is produced in plants in response to pathogen challenge, and induces systemic acquired resistance against secondary infection. This process requires the transcription cofactor NPR1, which indicated that NPR1 might be a salicylic acid receptor, but NPR1 alone does not bind to the hormone. Here, Xinnian Dong and colleagues identify the NPR1 paralogues NPR3 and NPR4 as salicylic acid receptors with different binding affinities. The authors propose a model for the regulation of NPR1 by NPR3 and NPR4 in response to different levels of salicylic acid.
0
Citation853
0
Save
0

Comparative Proteomic Analysis Provides New Insights into Chilling Stress Responses in Rice

Shunping Yan et al.Nov 30, 2005
Low temperature is one of the major abiotic stresses limiting the productivity and the geographical distribution of many important crops. To gain a better understanding of chilling stress responses in rice (Oryza sativa L. cv. Nipponbare), we carried out a comparative proteomic analysis. Three-week-old rice seedlings were treated at 6 degrees C for 6 or 24 h and then recovered for 24 h. Chilling treatment resulted in stress phenotypes of rolling leaves, increased relative electrolyte leakage, and decreased net photosynthetic rate. The temporal changes of total proteins in rice leaves were examined using two-dimensional electrophoresis. Among approximately 1,000 protein spots reproducibly detected on each gel, 31 protein spots were down-regulated, and 65 were up-regulated at least at one time point. Mass spectrometry analysis allowed the identification of 85 differentially expressed proteins, including well known and novel cold-responsive proteins. Several proteins showed enhanced degradation during chilling stress, especially the photosynthetic proteins such as Rubisco large subunit of which 19 fragments were detected. The identified proteins are involved in several processes, i.e. signal transduction, RNA processing, translation, protein processing, redox homeostasis, photosynthesis, photorespiration, and metabolisms of carbon, nitrogen, sulfur, and energy. Gene expression analysis of 44 different proteins by quantitative real time PCR showed that the mRNA level was not correlated well with the protein level. In conclusion, our study provides new insights into chilling stress responses in rice and demonstrates the advantages of proteomic analysis.
0
Citation506
0
Save
0

Proteomic analysis of salt stress‐responsive proteins in rice root

Shunping Yan et al.Jan 1, 2005
Salt stress is one of the major abiotic stresses in agriculture worldwide. We report here a systematic proteomic approach to investigate the salt stress-responsive proteins in rice (Oryza sativa L. cv. Nipponbare). Three-week-old seedlings were treated with 150 mM NaCl for 24, 48 and 72 h. Total proteins of roots were extracted and separated by two-dimensional gel electrophoresis. More than 1100 protein spots were reproducibly detected, including 34 that were up-regulated and 20 down-regulated. Mass spectrometry analysis and database searching helped us to identify 12 spots representing 10 different proteins. Three spots were identified as the same protein, enolase. While four of them were previously confirmed as salt stress-responsive proteins, six are novel ones, i.e. UDP-glucose pyrophosphorylase, cytochrome c oxidase subunit 6b-1, glutamine synthetase root isozyme, putative nascent polypeptide associated complex alpha chain, putative splicing factor-like protein and putative actin-binding protein. These proteins are involved in regulation of carbohydrate, nitrogen and energy metabolism, reactive oxygen species scavenging, mRNA and protein processing, and cytoskeleton stability. This study gives new insights into salt stress response in rice roots and demonstrates the power of the proteomic approach in plant biology studies.
5

Structural basis of salicylic acid perception by Arabidopsis NPR proteins

Wei Wang et al.Aug 12, 2020
Salicylic acid (SA) is a plant hormone that is critical for resistance to pathogens1-3. The NPR proteins have previously been identified as SA receptors4-10, although how they perceive SA and coordinate hormonal signalling remain unknown. Here we report the mapping of the SA-binding core of Arabidopsis thaliana NPR4 and its ligand-bound crystal structure. The SA-binding core domain of NPR4 refolded with SA adopts an α-helical fold that completely buries SA in its hydrophobic core. The lack of a ligand-entry pathway suggests that SA binding involves a major conformational remodelling of the SA-binding core of NPR4, which we validated using hydrogen-deuterium-exchange mass spectrometry analysis of the full-length protein and through SA-induced disruption of interactions between NPR1 and NPR4. We show that, despite the two proteins sharing nearly identical hormone-binding residues, NPR1 displays minimal SA-binding activity compared to NPR4. We further identify two surface residues of the SA-binding core, the mutation of which can alter the SA-binding ability of NPR4 and its interaction with NPR1. We also demonstrate that expressing a variant of NPR4 that is hypersensitive to SA could enhance SA-mediated basal immunity without compromising effector-triggered immunity, because the ability of this variant to re-associate with NPR1 at high levels of SA remains intact. By revealing the structural mechanisms of SA perception by NPR proteins, our work paves the way for future investigation of the specific roles of these proteins in SA signalling and their potential for engineering plant immunity.
5
Citation98
1
Save
1

The multi-BRCT domain protein DDRM2 is required for homologous recombination in plants

Lili Wang et al.Apr 9, 2022
Abstract DNA double-strand breaks (DSBs) are the most toxic DNA damage for cells. Homologous recombination (HR) is a precise DSB repair mechanism as well as a basis for gene targeting using genome-editing techniques. Despite the importance of HR, the HR mechanism in plants is poorly understood. In a genetic screen for DNA Damage Response Mutants (DDRMs), we find that the Arabidopsis ddrm2 mutant is hypersensitive to DSB-inducing reagents. DDRM2 encodes a protein with four BRCA1 C-terminal (BRCT) domains and is highly conserved in plants including the earliest land plant linage, bryophytes. The plant-specific transcription factor SOG1 binds to the promoter of DDRM2 and activates its expression, suggesting that DDRM2 is a direct target of SOG1. In consistence, the expression of DDRM2 is induced by DSBs in a SOG1-dependent manner. Epistasis analysis indicates that DDRM2 functions downstream of SOG1. Similar to the sog1 mutant, the ddrm2 mutant shows dramatically reduced HR efficiency. Our study suggests that the SOG1-DDRM2 module is required for HR, providing new insights into the HR mechanisms in plants and a potential target for improving the efficiency of gene targeting. One Sentence Summary A genetic screen in Arabidopsis reveals that the multi-BRCT domain protein DDRM2 is required for homologous recombination and is targeted by the master DNA damage response regulator SOG1.