UJ
Una Janke
Author with expertise in Amino Acid Transport and Metabolism in Health and Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
5
h-index:
6
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Structural Elucidation of a Metagenomic Urethanase and Its Engineering Towards Enhanced Hydrolysis Profiles

Thomas Bayer et al.Jul 1, 2024
While plastics like polyethylene terephthalate can already be degraded efficiently by the activity of hydrolases, other synthetic polymers like polyurethanes (PUs) and polyamides (PAs) largely resist biodegradation. In this study, we solved the first crystal structure of the metagenomic urethanase UMG-SP-1, identified highly flexible loop regions to comprise active site residues, and targeted a total of 20 potential hot spots by site-saturation mutagenesis. Engineering campaigns yielded variants with single mutations, exhibiting almost 3- and 8-fold improved activity against highly stable N-aryl urethane and amide bonds, respectively. Furthermore, we demonstrated the release of the corresponding monomers from a thermoplastic polyester-PU and a PA (nylon 6) by the activity of a single, metagenome-derived urethanase after short incubation times. Thereby, we expanded the hydrolysis profile of UMG-SP-1 beyond the reported low-molecular weight carbamates. Together, these findings promise advanced strategies for the bio-based degradation and recycling of plastic materials and waste, aiding efforts to establish a circular economy for synthetic polymers.
0
Citation4
0
Save
1

Inhibitory effect of EGCG-AgNPs and their lysozyme bioconjugates on biofilm formation and cytotoxicity

Brahmaiah Meesaragandla et al.Feb 24, 2022
ABSTRACT Biofilms are multicellular communities of microbial cells that grow on natural and synthetic surfaces. They have become the major cause for hospital-acquired infections because once they form, they are very difficult to eradicate. Nanotechnology offers a new approach to fight biofilm-associated infections. Here, we report on the synthesis of silver nanoparticles (AgNPs) with antibacterial ligand epigallocatechin gallate (EGCG) and the formation of lysozyme protein corona on AgNPs as shown by UV-Vis, dynamic light scattering, and circular dichroism analyses. We further tested the activity of EGCG-AgNPs and their lysozyme bioconjugates on the viability of Bacillus subtilis cells and biofilm formation. Our results showed that, although EGCG-AgNPs presented no antibacterial activity on planktonic Bacillus subtilis cells, they inhibited B. subtilis biofilm formation at concentrations larger than 40 nM and EGCG-AgNP-lysozyme bioconjugates inhibited biofilms at concentrations above 80 nM. Cytotoxicity assays performed with human cells showed a reverse trend, where EGCG-AgNPs barely affected human cell viability, while EGCG-AgNP-lysozyme bioconjugates severely hampered viability. Our results therefore demonstrate that EGCG-AgNPs may be used as non-cytotoxic antibiofilm agents.
1
Citation1
0
Save
0

Structural Elucidation of a Metagenomic Urethanase and Its Engineering Towards Enhanced Hydrolysis Profiles

Thomas Bayer et al.Jul 1, 2024
Abstract Während Kunststoffe wie Polyethylenterephthalat (PET) bereits effizient durch die Aktivität von Hydrolasen abgebaut werden können, sind andere synthetische Polymere wie Polyurethane (PUs) und Polyamide (PAs) weitgehend resistent gegenüber einem biologischen Abbau. In dieser Studie lösten wir die erste Kristallstruktur der metagenomischen Urethanase UMG‐SP‐1, identifizierten hochflexible Loopregionen, die Reste des aktiven Zentrums enthalten, und untersuchten insgesamt 20 potenzielle Hotspots mittels Sättigungsmutagenese. Die durch Protein Engineering erzeugten Einzelmutanten wiesen eine fast 3‐ bzw. 8‐fach verbesserte Aktivität gegenüber hochstabilen N ‐Arylurethan‐ und Amidbindungen auf. Darüber hinaus konnte die Freisetzung der entsprechenden Monomere aus einem thermoplastischen Polyester‐PU und einem PA (Nylon 6) durch die Aktivität einer einzigen, metagenomischen Urethanase nach kurzer Inkubationszeit nachgewiesen werden. Dadurch konnte das Hydrolyseprofil von UMG‐SP‐1 über die bekannten niedermolekularen Carbamate hinaus erweitert werden und erschließt so neue Möglichkeiten für den enzymatischen Abbau und das Recycling von Kunststoffen und Plastikabfällen. Damit unterstützt diese Studie Bemühungen um die Verbesserung einer Kreislaufwirtschaft für synthetische Polymere.