BC
Benjamin Campbell
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
0
h-index:
5
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Modulation of sleep/wake patterns by gephyrin phosphorylation status

Yuan‐Chen Tsai et al.Jul 19, 2024
Abstract Sleep/wake cycles intricately shape physiological activities including cognitive brain functions, yet the precise molecular orchestrators of sleep remain elusive. Notably, the clinical impact of benzodiazepine drugs underscores the pivotal role of GABAergic neurotransmission in sleep regulation. However, the specific contributions of distinct GABA A receptor subtypes and their principal scaffolding protein, gephyrin, in sleep dynamics remain unclear. The evolving role of synaptic phospho‐proteome alterations at excitatory and inhibitory synapses suggests a potential avenue for modulating gephyrin and, consequently, GABA A Rs for sleep through on‐demand kinase recruitment. Our study unveils the distinctive roles of two prevalent GABA A receptor subtypes, α1‐ and α2‐GABA A Rs, in influencing sleep duration and electrical sleep activity. Notably, the absence of α1‐GABA A Rs emerges as central in sleep regulation, manifesting significant alterations in both non‐rapid eye movement (NREM) and rapid eye movement (REM) sleep during dark or active phases, accompanied by altered electroencephalogram (EEG) patterns across various frequencies. Gephyrin proteomics analysis reveals sleep/wake‐dependent interactions with a repertoire of known and novel kinases. Crucially, we identify the regulation of gephyrin interaction with ERK1/2, and phosphorylations at serines 268 and 270 are dictated by sleep/wake cycles. Employing AAV‐eGFP‐gephyrin or its phospho‐null variant (S268A/S270A), we disrupt sleep either globally or locally to demonstrate gephyrin phosphorylation as a sleep regulator. In summary, our findings support the local cortical sleep hypothesis and we unveil a molecular mechanism operating at GABAergic synapses, providing critical insights into the intricate regulation of sleep.
0

Surfaceome dynamics during neuronal development and synaptic plasticity reveal system-wide surfaceome reorganization independent of global proteostasis

Marc Oostrum et al.Aug 9, 2019
Neurons are highly compartmentalized cells with tightly controlled subcellular protein organization. While broad brain transcriptome, connectome and global proteome maps are being generated, system-wide analysis of temporal protein dynamics at the subcellular level are currently lacking for neuronal development and synapse formation. We performed a temporally-resolved surfaceome analysis of developing primary neuron cultures to a depth of 1000 bona fide surface proteins and reveal dynamic surface protein clusters that reflect the functional requirements during distinct stages of neuronal development. Moreover, our data shows that synaptic proteins are globally trafficked to the surface prior to synapse formation. Direct comparison of surface and total protein pools demonstrates that, depending on the time scale, surface abundance changes can correlate or differ from total protein abundance. The uncoupling of surface and total abundance changes has direct functional implications as shown in the context of synaptic vesicle transport. To demonstrate the utility of our approach we analyzed the surfaceome modulation in response to homeostatic synaptic scaling and found dynamic remodeling of the neuronal surface, which was largely independent of global proteostasis, indicative of wide-spread regulation on the level of surface trafficking. Finally, we present a quantitative analysis of the neuronal surface during early-phase long-term potentiation (LTP) and reveal fast externalization of diverse classes of surface proteins beyond the AMPA receptor, providing new insights into the requirement of exocytosis for LTP. Our resource and finding of organizational principles highlight the importance of subcellular resolution for systems-level understanding of cellular processes, which are typically masked by broad omics-style approaches.
1

Seasonal changes in membrane structure and excitability in central neurons of goldfish (Carassius auratus) under constant environmental conditions

Michael Country et al.Mar 7, 2022
ABSTRACT Seasonal modifications in the structure of cellular membranes occur as an adaptive measure to withstand exposure to prolonged environmental change. Little is known about whether such changes may occur independently of external cues, such as photoperiod or temperature, or how they may impact the central nervous system (CNS). We compared membrane properties of central neurons isolated from the retina of goldfish ( Carassius auratus ), an organism well-adapted to extreme environmental change, during the summer and winter months. Goldfish were maintained in a facility under constant environmental conditions throughout the year. Analysis of whole-retina phospholipid composition using mass spectrometry-based lipidomics revealed a two-fold increase in phosphatidylethanolamine species during the winter, suggesting an increase in cell membrane fluidity. Atomic force microscopy was used to produce localized, nanoscale-force deformation of neuronal membranes. Measurement of Young’s modulus indicated increased membrane stiffness (or decreased elasticity) in neurons isolated during the winter. Voltage-clamp electrophysiology was used to assess physiological changes in neurons between seasons. Winter neurons displayed a hyperpolarized reversal potential ( V rev ) and a significantly lower input resistance ( R in ) compared to summer neurons. This was indicative of a decrease in membrane excitability during the winter. Subsequent measurement of intracellular Ca 2+ activity using Fura-2 microspectrofluorometry confirmed a reduction in action potential activity, including duration and action potential profile, in neurons isolated during the winter. These studies demonstrate chemical and biophysical changes that occur in central neurons of goldfish throughout the year without exposure to seasonal cues, and suggest a novel mechanism of seasonal regulation of CNS activity. SUMMARY STATEMENT Central neurons isolated from the retina of goldfish held under constant environmental conditions undergo seasonal changes in membrane structure and excitability.
3

A DARPin-based molecular toolset to probe gephyrin and inhibitory synapse biology

Benjamin Campbell et al.Jul 3, 2022
Abstract Neuroscience currently requires the use of antibodies to study synaptic proteins, where antibody binding is used as a correlate to define the presence, plasticity, and regulation of synapses. Gephyrin is an inhibitory synaptic scaffolding protein used to mark GABAergic and glycinergic postsynaptic sites. Despite the importance of gephyrin in modulating inhibitory transmission, its study is currently limited by the tractability of available reagents. Designed Ankyrin Repeat Proteins (DARPins) are a class of synthetic protein binder derived from diverse libraries by in vitro selection, and tested by high-throughput screening to produce specific binders. In order to generate a functionally diverse toolset for studying inhibitory synapses, we screened a DARPin library against gephyrin mutants representing both phosphorylated and dephosphorylated states. We validated the robust use of anti-gephyrin DARPin clones for morphological identification of gephyrin clusters in rodent neuron culture and brain tissue, discovering previously overlooked clusters. This DARPin-based toolset includes clones with heterogenous gephyrin binding modes that allowed for identification of the most extensive gephyrin interactome to date, and defined novel classes of putative interactors, creating a framework for understanding gephyrin’s non-synaptic functions. This study demonstrates anti-gephyrin DARPins as a versatile platform for studying inhibitory synapses in an unprecedented manner.