NG
Nastassia Gobet
Author with expertise in Genetic Architecture of Quantitative Traits
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
0
h-index:
3
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
18

Repeat Detector: versatile sizing of expanded tandem repeats and identification of interrupted alleles from targeted DNA sequencing

Alysha Taylor et al.Mar 9, 2022
Abstract Targeted DNA sequencing approaches will improve how the size of short tandem repeats is measured for diagnostic tests and pre-clinical studies. The expansion of these sequences causes dozens of disorders, with longer tracts generally leading to a more severe disease. Interrupted alleles are sometimes present within repeats and can alter disease manifestation. Determining repeat size mosaicism and identifying interruptions in targeted sequencing datasets remains a major challenge. This is in part because standard alignment tools are ill-suited for repetitive and unstable sequences. To address this, we have developed Repeat Detector (RD), a deterministic profile weighting algorithm for counting repeats in targeted sequencing data. We tested RD using blood-derived DNA samples from Huntington’s disease and Fuchs endothelial corneal dystrophy patients sequenced using either Illumina MiSeq or Pacific Biosciences single-molecule, real-time sequencing platforms. RD was highly accurate in determining repeat sizes of 609 blood-derived samples from Huntington’s disease individuals and did not require prior knowledge of the flanking sequences. Furthermore, RD can be used to identify alleles with interruptions and provide a measure of repeat instability within an individual. RD is therefore highly versatile and may find applications in the diagnosis of expanded repeat disorders and the development of novel therapies.
6

Towards mouse genetic-specific RNA-sequencing read mapping

Nastassia Gobet et al.Oct 1, 2021
Abstract Genetic variations affect behavior and cause disease but understanding how these variants drive complex traits is still an open question. A common approach is to link the genetic variants to intermediate molecular phenotypes such as the transcriptome using RNA-sequencing (RNA-seq). Paradoxically, these variants between the samples are usually ignored at the beginning of RNA-seq analyses of many model organisms. This can skew the transcriptome estimates that are used later for downstream analyses, such as expression quantitative trait locus (eQTL) detection. Here, we assessed the impact of reference-based analysis on the transcriptome and eQTLs in a widely-used mouse genetic population: the BXD panel of recombinant inbred lines. We highlight existing reference bias in the transcriptome data analysis and propose practical solutions which combine available genetic variants, genotypes, and genome reference sequence. The use of custom BXD line references improved downstream analysis compared to classical genome reference. These insights would likely benefit genetic studies with a transcriptomic component and demonstrate that genome references might need to be reassessed and improved.