NZ
Naixia Zhang
Author with expertise in Ubiquitin-Proteasome Proteolytic Pathway
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
2,067
h-index:
30
/
i10-index:
56
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Proteasome subunit Rpn13 is a novel ubiquitin receptor

Koraljka Husnjak et al.May 1, 2008
Proteasomal receptors that recognize ubiquitin chains attached to substrates are key mediators of selective protein degradation in eukaryotes. Here we report the identification of a new ubiquitin receptor, Rpn13/ARM1, a known component of the proteasome. Rpn13 binds ubiquitin through a conserved amino-terminal region termed the pleckstrin-like receptor for ubiquitin (Pru) domain, which binds K48-linked diubiquitin with an affinity of approximately 90 nM. Like proteasomal ubiquitin receptor Rpn10/S5a, Rpn13 also binds ubiquitin-like (UBL) domains of UBL-ubiquitin-associated (UBA) proteins. In yeast, a synthetic phenotype results when specific mutations of the ubiquitin binding sites of Rpn10 and Rpn13 are combined, indicating functional linkage between these ubiquitin receptors. Because Rpn13 is also the proteasomal receptor for Uch37, a deubiquitinating enzyme, our findings suggest a coupling of chain recognition and disassembly at the proteasome. The 26S proteasome is a multisubunit complex that selectively degrades ubiquitin conjugated proteins. Two studies show that a known component of the proteasome, Rpn13 functions as a novel ubiquitin binding receptor. Structural studies reveal a novel mode of ubiquitin recognition. Rpn 13 is also a receptor for a deubiquitinating enzyme, suggesting a linkage between ubiquitin chain recognition and disassembly. The 26S proteasome is a multisubunit complex that selectively degrades ubiquitin conjugated proteins. Two studies (this Article and the Letter Dikic doi:10.1038/nature06924) show that a known component of the proteasome, Rpn13, functions as a novel ubiquitin binding receptor, and structural studies reveal a novel mode of ubiquitin recognition. Rpn13 is also a receptor for a deubiquitinating enzyme, suggesting a linkage between ubiquitin chain recognition and disassembly.
0

Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction

Patrick Schreiner et al.May 1, 2008
Targeted protein degradation is largely performed by the ubiquitin-proteasome pathway, in which substrate proteins are marked by covalently attached ubiquitin chains that mediate recognition by the proteasome. It is currently unclear how the proteasome recognizes its substrates, as the only established ubiquitin receptor intrinsic to the proteasome is Rpn10/S5a (ref. 1), which is not essential for ubiquitin-mediated protein degradation in budding yeast. In the accompanying manuscript we report that Rpn13 (refs 3-7), a component of the nine-subunit proteasome base, functions as a ubiquitin receptor, complementing its known role in docking de-ubiquitinating enzyme Uch37/UCHL5 (refs 4-6) to the proteasome. Here we merge crystallography and NMR data to describe the ubiquitin-binding mechanism of Rpn13. We determine the structure of Rpn13 alone and complexed with ubiquitin. The co-complex reveals a novel ubiquitin-binding mode in which loops rather than secondary structural elements are used to capture ubiquitin. Further support for the role of Rpn13 as a proteasomal ubiquitin receptor is demonstrated by its ability to bind ubiquitin and proteasome subunit Rpn2/S1 simultaneously. Finally, we provide a model structure of Rpn13 complexed to diubiquitin, which provides insights into how Rpn13 as a ubiquitin receptor is coupled to substrate deubiquitination by Uch37.
0

PPIA dictates NRF2 stability to promote lung cancer progression

Weiqiang Lü et al.Jun 3, 2024
Abstract Nuclear factor erythroid 2-related factor 2 (NRF2) hyperactivation has been established as an oncogenic driver in a variety of human cancers, including non-small cell lung cancer (NSCLC). However, despite massive efforts, no specific therapy is currently available to target NRF2 hyperactivation. Here, we identify peptidylprolyl isomerase A (PPIA) is required for NRF2 protein stability. Ablation of PPIA promotes NRF2 protein degradation and blocks NRF2-driven growth in NSCLC cells. Mechanistically, PPIA physically binds to NRF2 and blocks the access of ubiquitin/Kelch Like ECH Associated Protein 1 (KEAP1) to NRF2, thus preventing ubiquitin-mediated degradation. Our X-ray co-crystal structure reveals that PPIA directly interacts with a NRF2 interdomain linker via a trans -proline 174-harboring hydrophobic sequence. We further demonstrate that an FDA-approved drug, cyclosporin A (CsA), impairs the interaction of NRF2 with PPIA, inducing NRF2 ubiquitination and degradation. Interestingly, CsA interrupts glutamine metabolism mediated by the NRF2/KLF5/SLC1A5 pathway, consequently suppressing the growth of NRF2-hyperactivated NSCLC cells. CsA and a glutaminase inhibitor combination therapy significantly retard tumor progression in NSCLC patient-derived xenograft (PDX) models with NRF2 hyperactivation. Our study demonstrates that targeting NRF2 protein stability is an actionable therapeutic approach to treat NRF2-hyperactivated NSCLC.
0
Citation1
0
Save
1

Drug design and repurposing with a sequence-to-drug paradigm

Lifan Chen et al.Mar 26, 2022
Abstract Drug development based on target proteins has been a successful approach in recent decades. A conventional structure-based drug design pipeline is a complex, human-engineered pipeline with multiple independently optimized steps. Advances in end-to-end differentiable learning suggest the potential benefits of similarly reformulating drug design. Here, we proposed a new sequence-to-drug paradigm that discovers drug-like small-molecule modulators directly from protein sequences and validated this concept for the first time in three stages. First, we designed TransformerCPI2.0 as a core tool for the sequence-to-drug paradigm, which exhibited competitive performance with conventional structure-based drug design approaches. Second, we validated the binding knowledge that TransformerCPI2.0 has learned. Third, we applied a sequence-to-drug paradigm to discover new hits for E3 ubiquitin-protein ligases: speckle-type POZ protein (SPOP), ring finger protein 130 (RNF130) which does not have a 3D structure, and repurposed proton pump inhibitors (PPIs) for ADP-ribosylation factor 1 (ARF1). This first proof of concept shows that the sequence-to-drug paradigm is a promising direction for drug development.