ES
Elena Stepchenkova
Author with expertise in Molecular Mechanisms of DNA Damage Response
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
1
h-index:
11
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Compensation for the absence of the catalytically active half of DNA polymerase ε in yeast by positively selected mutations inCDC28gene

Elena Stepchenkova et al.Aug 28, 2020
Abstract DNA polymerase ε (pol ε) participates in the leading DNA strand synthesis in eukaryotes. The catalytic subunit of this enzyme, Pol2, is a fusion of two ancestral B-family DNA polymerases. Paradoxically, the catalytically active N-terminal pol is dispensable, and an inactive C-terminal pol is essential for yeast cell viability. Despite extensive studies of strains without the active N-terminal half (mutation pol2-16 ), it is still unclear how they survive and what is the mechanism of rapid recovery of initially miserably growing cells. The reason for the slow progress is in the difficultly of obtaining strains with the defect. We designed a robust method for constructing mutants with only the C-terminal part of Pol2 using allele pol2rc-ΔN with optimized codon usage. Colonies bearing pol2rc-ΔN appear three times sooner than colonies of pol2-16 but exhibit similar growth defects: sensitivity to hydroxyurea, chromosomal instability, and an elevated level of spontaneous mutagenesis. UV-induced mutagenesis is partially affected; it is lower only at high doses in some reporters. The analysis of the genomes of pol2rc-ΔN isolates revealed the prevalence of nonsynonymous mutations suggesting that the growth recovery was a result of positive selection for better growth fueled by variants produced by the elevated mutation rate. Mutations in the CDC28 gene, the primary regulator of the cell cycle, were repeatedly found in independent clones. Genetic analysis established that cdc28 alleles single-handedly improve the growth of pol2rc-ΔN strains and suppress sensitivity hydroxyurea. The affected amino acids are located on the Cdc28 molecule’s two surfaces that mediate contacts with cyclins or kinase subunits. Our work establishes the significance of the CDC28 gene for the resilience of replication and predicts that changes in mammalian homologs of cyclin-dependent kinases may play a role in remastering replication to compensate for the defects in the leading strand synthesis by the dedicated polymerase. Author Summary The catalytic subunit of the leading strand DNA polymerase ε, Pol2, consists of two halves made of two different ancestral B-family DNA polymerases. Counterintuitively, the catalytically active N-terminal half is dispensable while the inactive C-terminal part is required for viability. The corresponding strains show a severe growth defect, sensitivity to replication inhibitors, chromosomal instability, and elevated spontaneous mutagenesis. Intriguingly, the slow-growing mutant strains rapidly produced fast-growing clones. We discovered that the adaptation to the loss of the catalytic N-terminal part of Pol2 occurs during evolution by positive selection for a better growth fueled by variants produced by elevated mutation rates. Mutations in the cell cycle-dependent kinase gene, CDC28 , can single-handedly improve the growth of strains lacking the N-terminal part of Pol2. Our study predicts that changes in mammalian homologs of cyclin-dependent kinases may play a role in response to the defects of active leading strand polymerase.
0
Citation1
0
Save
4

The iron-sulfur cluster is critical for DNA binding by human DNA polymerase ε

Alisa Lisova et al.May 5, 2022
ABSTRACT DNA polymerase ε (Polε) is a key enzyme for DNA replication in eukaryotes. It is attached to a helicase and performs DNA synthesis on the leading strand. Recently it was shown that the catalytic domain of yeast Polε (Polε CD ) contains a [4Fe-4S] cluster located at the base of the processivity domain (P-domain) and coordinated by four conserved cysteines. In this work, we have shown that human Polε CD (hPolε CD ) expressed in bacterial cells also contains an iron-sulfur cluster. In comparison, recombinant hPolε CD produced in insect cells contains an eight-fold-lower level of iron. Interestingly, the iron content correlates with the level of DNA-binding molecules, which suggests an important role of the iron-sulfur cluster in hPolε interaction with DNA. Indeed, mutation of two conserved cysteines that coordinate the cluster abolished template:primer binding and, therefore, DNA polymerase and proofreading exonuclease activities. We propose that the cluster regulates the conformation of the P-domain, which, like a gatekeeper, controls access to a DNA-binding cleft for a template:primer. In addition, we performed kinetic and binding studies of hPolε CD . The binding studies demonstrated low affinity of hPolε CD to DNA and a strong effect of salt concentration on stability of the hPolε CD /DNA complex. Pre-steady-state kinetic studies have shown a maximal polymerization rate constant of 51.5 s -1 and a relatively low affinity to incoming dNTP with an apparent K D of 105 μM. This work provides notable insight into the role of a [4Fe-4S] cluster in Polε function.