LK
Lawrence Kwong
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(100% Open Access)
Cited by:
4,799
h-index:
39
/
i10-index:
69
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

Oncogenic Signaling Pathways in The Cancer Genome Atlas

Stacey Gabriel et al.Apr 1, 2018
Highlights•Alteration map of 10 signaling pathways across 9,125 samples from 33 cancer types•Reusable, curated pathway templates that include a catalogue of driver genes•57% of tumors have at least one potentially actionable alteration in these pathways•Co-occurrence of actionable alterations suggests combination therapy opportunitiesSummaryGenetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFβ signaling, p53 and β-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.Graphical abstract
6
Citation2,561
0
Save
0

Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade

Pei-Ling Chen et al.Jun 15, 2016
Abstract Immune checkpoint blockade represents a major breakthrough in cancer therapy; however, responses are not universal. Genomic and immune features in pretreatment tumor biopsies have been reported to correlate with response in patients with melanoma and other cancers, but robust biomarkers have not been identified. We studied a cohort of patients with metastatic melanoma initially treated with cytotoxic T-lymphocyte–associated antigen-4 (CTLA4) blockade (n = 53) followed by programmed death-1 (PD-1) blockade at progression (n = 46), and analyzed immune signatures in longitudinal tissue samples collected at multiple time points during therapy. In this study, we demonstrate that adaptive immune signatures in tumor biopsy samples obtained early during the course of treatment are highly predictive of response to immune checkpoint blockade and also demonstrate differential effects on the tumor microenvironment induced by CTLA4 and PD-1 blockade. Importantly, potential mechanisms of therapeutic resistance to immune checkpoint blockade were also identified. Significance: These studies demonstrate that adaptive immune signatures in early on-treatment tumor biopsies are predictive of response to checkpoint blockade and yield insight into mechanisms of therapeutic resistance. These concepts have far-reaching implications in this age of precision medicine and should be explored in immune checkpoint blockade treatment across cancer types. Cancer Discov; 6(8); 827–37. ©2016 AACR. See related commentary by Teng et al., p. 818. This article is highlighted in the In This Issue feature, p. 803
0
Citation833
0
Save
0

Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma

Lawrence Kwong et al.Sep 16, 2012
NRAS-driven melanomas have limited therapeutic options. Combining genetically engineered models and oncogenic signaling inhibitors with rational systems-biology approaches, the authors compare the effects of genetic extinction of NRAS to that of chemical pathway inhibition targeting downstream MEK. The differences provide actionable targets by revealing that NRAS signaling operates as a gated output and that MEK inhibition, although inducing apoptosis, is not able to achieve further inhibition of NRAS-induced outputs such as cell-cycle progression. A combination of MEK and CDK4 inhibitors provides a more complete inhibition of NRAS signaling and a more effective antitumor effect in vivo. The discovery of potent inhibitors of the BRAF proto-oncogene has revolutionized therapy for melanoma harboring mutations in BRAF, yet NRAS-mutant melanoma remains without an effective therapy. Because direct pharmacological inhibition of the RAS proto-oncogene has thus far been unsuccessful, we explored systems biology approaches to identify synergistic drug combination(s) that can mimic RAS inhibition. Here, leveraging an inducible mouse model of NRAS-mutant melanoma, we show that pharmacological inhibition of mitogen-activated protein kinase kinase (MEK) activates apoptosis but not cell-cycle arrest, which is in contrast to complete genetic neuroblastoma RAS homolog (NRAS) extinction, which triggers both of these effects. Network modeling pinpointed cyclin-dependent kinase 4 (CDK4) as a key driver of this differential phenotype. Accordingly, combined pharmacological inhibition of MEK and CDK4 in vivo led to substantial synergy in therapeutic efficacy. We suggest a gradient model of oncogenic NRAS signaling in which the output is gated, resulting in the decoupling of discrete downstream biological phenotypes as a result of incomplete inhibition. Such a gated signaling model offers a new framework to identify nonobvious coextinction target(s) for combined pharmacological inhibition in NRAS-mutant melanomas.
0
Citation341
0
Save
0

Passenger deletions generate therapeutic vulnerabilities in cancer

Florian Müller et al.Aug 14, 2012
Inactivation of tumour-suppressor genes by homozygous deletion is a prototypic event in the cancer genome, yet such deletions often encompass neighbouring genes. We propose that homozygous deletions in such passenger genes can expose cancer-specific therapeutic vulnerabilities when the collaterally deleted gene is a member of a functionally redundant family of genes carrying out an essential function. The glycolytic gene enolase 1 (ENO1) in the 1p36 locus is deleted in glioblastoma (GBM), which is tolerated by the expression of ENO2. Here we show that short-hairpin-RNA-mediated silencing of ENO2 selectively inhibits growth, survival and the tumorigenic potential of ENO1-deleted GBM cells, and that the enolase inhibitor phosphonoacetohydroxamate is selectively toxic to ENO1-deleted GBM cells relative to ENO1-intact GBM cells or normal astrocytes. The principle of collateral vulnerability should be applicable to other passenger-deleted genes encoding functionally redundant essential activities and provide an effective treatment strategy for cancers containing such genomic events. The ‘collateral’ homozygous deletion of essential redundant housekeeping genes in cancer genomes is shown to confer therapeutic vulnerability on cancer cells with the deletion, without affecting genomically intact normal non-cancerous cells, suggesting new therapeutic opportunities. This Article introduces the concept of 'collateral damage' in cancer genomes as a possible basis for therapeutic strategies. Ronald DePinho and colleagues examine pairs of functionally redundant 'passenger' genes with 'housekeeping' roles, for example in cellular metabolism. They hypothesize that genetic deletions in cancer that encompass one such gene (as collateral damage caused by proximity to tumour-suppressor genes) may expose a selective vulnerability of cancer cells, but not normal cells, to pharmacological inhibition of the protein encoded by the second gene. They demonstrate this concept for the glycolytic enzymes ENO1 and ENO2. There is often homozygous deletion of the ENO1 gene on chromosome 1p36 in glioblastomas, which is shown here to render glioma cells sensitive to knockdown of ENO2 or to a small-molecule enolase inhibitor. The authors further analyse existing cancer genomics data sets for other examples of pairs of redundant housekeeping genes, one of which resides close to frequently deleted tumour-suppressor genes. They suggest that this concept may be generally applicable and could offer new therapeutic opportunities.
0
Citation320
0
Save
2

Microparticle-delivered Cxcl9 prolongs Braf inhibitor efficacy in melanoma

Gabriele Romano et al.May 25, 2022
ABSTRACT Patients with BRAF-mutant melanoma show significant responses to combined BRAF and MEK inhibition, but most relapse within 2 years. A major reservoir for drug resistance is minimal residual disease (MRD), comprised of drug-tolerant tumor cells laying in a dormant state. Towards exploiting potential therapeutic vulnerabilities of MRD, we established a genetically engineered mouse model of Braf V600E -driven melanoma MRD wherein genetic Braf V600E extinction leads to strong but incomplete tumor regression. Transcriptional time-course analysis after Braf V600E extinction revealed that after an initial surge of immune activation, tumors later became immunologically “cold” after MRD establishment. Computational analysis identified candidate T-cell recruiting chemokines that may be central players in the process, being strongly upregulated initially and steeply decreasing as the immune response faded. Therefore, we hypothesized that sustaining the chemokine signaling could impair MRD maintenance through increased recruitment of effector T-cells. We show that intratumoral administration of recombinant Cxcl9, either naked or loaded in microparticles, significantly impaired MRD relapse in BRAF-inhibited tumors, including several complete responses after microparticle-delivered rCxcl9 combined with BRAF and MEK-inhibition. Our experiments constitute a proof of concept that chemokine-based microparticle delivery systems are a potential strategy to forestall tumor relapse and thus improve the clinical success of frontline treatment methods.
1

Genome edited colorectal cancer organoid models reveal distinct microRNA activity patterns across different mutation profiles

Jonathan Villanueva et al.Dec 14, 2021
Abstract Somatic mutations drive colorectal cancer (CRC) by disrupting gene regulatory mechanisms. Distinct combinations of mutations can result in unique changes to regulatory mechanisms leading to variability in the efficacy of therapeutics. MicroRNAs are important regulators of gene expression, and their activity can be altered by oncogenic mutations. However, it is unknown how distinct combinations of CRC-risk mutations differentially affect microRNAs. Here, using genetically-modified mouse intestinal organoid (enteroid) models, we identify 12 different modules of microRNA expression patterns across distinct combinations of mutations common in CRC. We also show that miR-24-3p is aberrantly upregulated in genetically-modified mouse enteroids irrespective of mutational context. Furthermore, we identify an enrichment of miR-24-3p predicted targets in downregulated gene lists from various mutational contexts compared to WT. In follow-up experiments, we demonstrate that miR-24-3p promotes CRC cell survival in multiple cell contexts. Our novel characterization of genotype-specific patterns of miRNA expression offer insight into the mechanisms that drive inter-tumor heterogeneity and highlight candidate microRNA therapeutic targets for the advancement of precision medicine for CRC.