MI
Michelina Iacovino
Author with expertise in Induction and Differentiation of Pluripotent Stem Cells
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(100% Open Access)
Cited by:
1,422
h-index:
32
/
i10-index:
49
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells

Carlo Pirazzi et al.Mar 25, 2014
Retinoids are micronutrients that are stored as retinyl esters in the retina and hepatic stellate cells (HSCs). HSCs are key players in fibrogenesis in chronic liver diseases. The enzyme responsible for hydrolysis and release of retinyl esters from HSCs is unknown and the relationship between retinoid metabolism and liver disease remains unclear. We hypothesize that the patatin-like phospholipase domain-containing 3 (PNPLA3) protein is involved in retinol metabolism in HSCs. We tested our hypothesis both in primary human HSCs and in a human cohort of subjects with non-alcoholic fatty liver disease (N = 146). Here we show that PNPLA3 is highly expressed in human HSCs. Its expression is regulated by retinol availability and insulin, and increased PNPLA3 expression results in reduced lipid droplet content. PNPLA3 promotes extracellular release of retinol from HSCs in response to insulin. We also show that purified wild-type PNPLA3 hydrolyzes retinyl palmitate into retinol and palmitic acid. Conversely, this enzymatic activity is markedly reduced with purified PNPLA3 148M, a common mutation robustly associated with liver fibrosis and hepatocellular carcinoma development. We also find the PNPLA3 I148M genotype to be an independent (P = 0.009 in a multivariate analysis) determinant of circulating retinol-binding protein 4, a reliable proxy for retinol levels in humans. This study identifies PNPLA3 as a lipase responsible for retinyl-palmitate hydrolysis in HSCs in humans. Importantly, this indicates a potential novel link between HSCs, retinoid metabolism and PNPLA3 in determining the susceptibility to chronic liver disease.
0

Generation of functional thyroid from embryonic stem cells

Francesco Antonica et al.Oct 9, 2012
The primary function of the thyroid gland is to metabolize iodide by synthesizing thyroid hormones, which are critical regulators of growth, development and metabolism in almost all tissues. So far, research on thyroid morphogenesis has been missing an efficient stem-cell model system that allows for the in vitro recapitulation of the molecular and morphogenic events regulating thyroid follicular-cell differentiation and subsequent assembly into functional thyroid follicles. Here we report that a transient overexpression of the transcription factors NKX2-1 and PAX8 is sufficient to direct mouse embryonic stem-cell differentiation into thyroid follicular cells that organize into three-dimensional follicular structures when treated with thyrotropin. These in vitro-derived follicles showed appreciable iodide organification activity. Importantly, when grafted in vivo into athyroid mice, these follicles rescued thyroid hormone plasma levels and promoted subsequent symptomatic recovery. Thus, mouse embryonic stem cells can be induced to differentiate into thyroid follicular cells in vitro and generate functional thyroid tissue. Transient overexpression of the transcription factors NKX2-1 and PAX8 in a murine cell model is shown to direct the differentiation of embryonic stem cells towards a thyroid follicular cell lineage; the resulting three-dimensional thyroid follicles created by subsequent thyrotropin treatment show hallmarks of thyroid function in vitro and rescue thyroid function in vivo when transplanted into athyroid mice, adding to our understanding of the molecular mechanisms underlying thyroid development. Sabine Costagliola and colleagues report a protocol that converts mouse embryonic stem cells into functional thyroid follicles in vitro. Overexpression of the transcription factors NKX2.1 and PAX8 directs differentiation towards thyroid follicular cells, which undergo self-assembly when treated with thyrotropin. The resulting three-dimensional thyroid follicles show hallmarks of thyroid function in vitro, and can rescue multiple symptoms when transplanted into athyroid mice. This work not only adds to our understanding of the molecular mechanism behind thyroid development, but also paves the way for regenerative medicine to treat congenital hypothyroidism, the most common congenital endocrine disease in humans.
0
Citation311
0
Save
0

p53 Regulates Cell Cycle and MicroRNAs to Promote Differentiation of Human Embryonic Stem Cells

Abhinav Jain et al.Feb 28, 2012
Multiple studies show that tumor suppressor p53 is a barrier to dedifferentiation; whether this is strictly due to repression of proliferation remains a subject of debate. Here, we show that p53 plays an active role in promoting differentiation of human embryonic stem cells (hESCs) and opposing self-renewal by regulation of specific target genes and microRNAs. In contrast to mouse embryonic stem cells, p53 in hESCs is maintained at low levels in the nucleus, albeit in a deacetylated, inactive state. In response to retinoic acid, CBP/p300 acetylates p53 at lysine 373, which leads to dissociation from E3-ubiquitin ligases HDM2 and TRIM24. Stabilized p53 binds CDKN1A to establish a G1 phase of cell cycle without activation of cell death pathways. In parallel, p53 activates expression of miR-34a and miR-145, which in turn repress stem cell factors OCT4, KLF4, LIN28A, and SOX2 and prevent backsliding to pluripotency. Induction of p53 levels is a key step: RNA-interference-mediated knockdown of p53 delays differentiation, whereas depletion of negative regulators of p53 or ectopic expression of p53 yields spontaneous differentiation of hESCs, independently of retinoic acid. Ectopic expression of p53R175H, a mutated form of p53 that does not bind DNA or regulate transcription, failed to induce differentiation. These studies underscore the importance of a p53-regulated network in determining the human stem cell state.
0
Citation227
0
Save
2

Brain transplantation of genetically corrected Sanfilippo B Neural Stem Cells induces partial cross-correction of the disease

Yewande Pearse et al.Jul 2, 2022
ABSTRACT Sanfilippo syndrome type B (Mucopolysaccharidosis type IIIB or MPS IIIB) is a recessive genetic disorder that severely affects the brain due to a deficiency in the enzyme α- N -acetylglucosaminidase (NAGLU), leading to intralysosomal accumulation of partially degraded heparan sulfate. There are no effective treatments for this disorder. In this project, we carried out an ex vivo lentiviral correction of neural stem cells derived from Naglu -/- mice (iNSCs) using a modified enzyme in which the NAGLU is fused to an Insulin-like Growth Factor II receptor (IGFIIR) binding peptide in order to improve the cross-correction efficiency. After brain transplantation of these corrected iNSCs into Naglu -/- mice and long-term evaluation of the cross-correction, we successfully detected NAGLU-IGFII activity in all transplanted animals, as well as decreased lysosomal accumulation and reduced astrocytic and microglial activation throughout the transplanted brain. In addition, we identified a novel neuropathological phenotype in untreated brains characterized by decreased levels of MAP2 protein and accumulation of synaptophysin-positive aggregates in the brain. Following transplantation, this Naglu -/- -specific phenotype was altered with restored levels of MAP2 expression and significantly reduced formation of synaptophysin-positive aggregates. Our results demonstrate the feasibility and long-term benefit of genetically corrected iNSCs transplantation in the Sanfilippo B brain and effective cross-correction of Sanfilippo-associated pathology in Naglu -/- mice. Our findings suggest that genetically engineered iNSCs can be used to effectively deliver the missing enzyme to the brain and treat Sanfilippo type B-associated neuropathology.
1

A novel, ataxic mouse model of Ataxia Telangiectasia caused by a clinically relevant nonsense mutation

H. Perez et al.Nov 23, 2020
Abstract Ataxia Telangiectasia (A-T) and Ataxia with Ocular Apraxia Type 1 (AOA1) are devastating neurological disorders caused by null mutations in the genome stability genes, A-T mutated ( ATM ) and Aprataxin ( APTX ), respectively. Our mechanistic understanding and therapeutic repertoire for treating these disorders is severely lacking, in large part due to the failure of prior animal models with similar null mutations to recapitulate the characteristic loss of motor coordination (i.e., ataxia) and associated cerebellar defects. By increasing genotoxic stress through the insertion of null mutations in both the Atm (nonsense) and Aptx (knockout) genes in the same animal, we have generated a novel mouse model that for the first time develops a progressively severe ataxic phenotype associated with atrophy of the cerebellar molecular layer. We find biophysical properties of cerebellar Purkinje neurons are significantly perturbed (e.g., reduced membrane capacitance, lower action potential thresholds, etc.), while properties of synaptic inputs remain largely unchanged. These perturbations significantly alter Purkinje neuron neural activity, including a progressive reduction in spontaneous action potential firing frequency that correlates with both cerebellar atrophy and ataxia over the animal’s first year of life. Double mutant mice also exhibit a high predisposition to developing cancer (thymomas) and immune abnormalities (impaired early thymocyte development and T-cell maturation), symptoms characteristic of A-T. Lastly, by inserting a clinically relevant nonsense-type null mutation in Atm , we demonstrate that S mall M olecule R ead- T hrough (SMRT) compounds can restore ATM production, indicating their potential as a future A-T therapeutic.
0

A Pilot Study on the Effects of Exercise Training on Cardiorespiratory Performance, Quality of Life, and Immunologic Variables in Long COVID

Asghar Abbasi et al.Sep 20, 2024
Objectives: Fatigue is a prominent feature of long COVID (LC) and may be related to several pathophysiologic mechanisms, including immune hyperstimulation. Aerobic endurance exercise training may be a useful therapy, with appropriate attention to preventing post-exertional malaise. Methods: Fourteen participants completed a pilot study of aerobic exercise training (twenty 1.5 h sessions of over 10 weeks). Cardiorespiratory fitness, 6 min walk distance, quality of life, symptoms, 7-day physical activity, immunophenotype, and inflammatory biomarkers were measured before and after exercise training. Results: The participant characteristics at baseline were as follows: 53.5 ± 11.6 yrs, 53% f, BMI 32.5 ± 8.4, 42% ex-smokers, 15.1 ± 8.8 months since initial COVID-19 infection, low normal pulmonary function testing, V.O2peak 19.3 ± 5.1 mL/kg/min, 87 ± 17% predicted. After exercise training, participants significantly increased their peak work rate (+16 ± 20 W, p = 0.010) and V.O2peak (+1.55 ± 2.4 mL/kg/min, p = 0.030). Patients reported improvements in fatigue severity (−11%), depression (−42%), anxiety (−29%), and dyspnea level (−46%). There were no changes in 6MW distance or physical activity. The circulating number of CD3+, CD4+, CD19+, CD14++CD16, and CD16++CD14+ monocytes and CD56+ cells (assessed with flow cytometry) increased with acute exercise (rest to peak) and was not diminished or augmented by exercise training. Plasma concentrations of TNF-α, IL-6, IL-8, IL-10, INF-γ, and INF-λ were normal at study entry and not affected by training. Conclusions: Aerobic endurance exercise training in individuals with LC delivered beneficial effects on cardiorespiratory fitness, quality of life, anxiety, depression, and fatigue without detrimental effects on immunologic function.
0

Anakinra in Sanfilippo syndrome: a phase 1/2 trial

Lynda Polgreen et al.Jun 21, 2024
Sanfilippo syndrome is a fatal childhood neurodegenerative disorder involving neuroinflammation among multiple pathologies. We hypothesized that anakinra, a recombinant interleukin-1 receptor antagonist, could improve neurobehavioral and functional symptoms owing to its capacity to treat neuroinflammation. This phase 1/2 trial aimed to test the safety, tolerability and effects of anakinra on neurobehavioral, functional and quality-of-life outcomes in patients and their caregivers. The primary outcome was the percent of participants requiring a dose increase at week 8 or week 16. Secondary efficacy outcomes included a multi-domain responder index (MDRI). Twenty-three participants (6-26 years of age) were enrolled. Twenty continued treatment to week 8, and 15 (75%) required an increased dose at week 8 or week 16. There was an improvement in at least one domain in the MDRI in 18 of 21 (86%) at week 8 and in 15 of 16 (94%) at week 36. Seven participants withdrew (intolerability of daily injections and lost to follow-up) before week 36. Adverse events occurred in 22 of 23 (96%) participants, most commonly mild injection site reactions. No serious adverse events were related to anakinra. In conclusion, anakinra was safe and associated with improved neurobehavioral and functional outcomes, supporting continued investigation of anakinra in Sanfilippo syndrome and other mucopolysaccharidoses. ClinicalTrials.gov identifier: NCT04018755 .