A new version of ResearchHub is available.Try it now
Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
KB
Kirstine Berg‐Sørensen
Author with expertise in Diamond Nanotechnology and Applications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
1,921
h-index:
31
/
i10-index:
47
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Power spectrum analysis for optical tweezers

Kirstine Berg‐Sørensen et al.Feb 17, 2004
The force exerted by an optical trap on a dielectric bead in a fluid is often found by fitting a Lorentzian to the power spectrum of Brownian motion of the bead in the trap. We present explicit functions of the experimental power spectrum that give the values of the parameters fitted, including error bars and correlations, for the best such χ2 fit in a given frequency range. We use these functions to determine the information content of various parts of the power spectrum, and find, at odds with lore, much information at relatively high frequencies. Applying the method to real data, we obtain perfect fits and calibrate tweezers with less than 1% error when the trapping force is not too strong. Relatively strong traps have power spectra that cannot be fitted properly with any Lorentzian, we find. This underscores the need for better understanding of the power spectrum than the Lorentzian provides. This is achieved using old and new theory for Brownian motion in an incompressible fluid, and new results for a popular photodetection system. The trap and photodetection system are then calibrated simultaneously in a manner that makes optical tweezers a tool of precision for force spectroscopy, local viscometry, and probably other applications.
4

Quantitative Evaluation of the Cellular Uptake of Nanodiamonds by Monocytes and Macrophages

Μαρία Νιώρα et al.Aug 26, 2022
Nanodiamonds (NDs) with NV − defect centers are great probes for bionanotechnology applications, with potential to act as biomarkers for cell differentiation. To explore this concept, uptake of NDs (~120nm) by THP-1 monocytes and monocyte-derived M0-macrophages is studied. The time course analysis of ND uptake by monocytes confirms differing ND-cell interactions and a positive time-dependence. No effect on cell viability, proliferation and differentiation potential into macrophages is observed, while cells saturated with NDs, unload the NDs completely by 25 cell divisions and subsequently take up a second dose effectively. ND uptake variations by THP-1 cells at early exposure-times indicate differing phagocytic capability. The cell fraction that exhibits relatively enhanced ND uptake is associated to a macrophage phenotype which derives from spontaneous monocyte differentiation. In accordance, chemical-differentiation of the THP-1 cells into M0-macrophages triggers increased and homogeneous ND uptake, depleting the fraction of cells that were non-responsive to NDs. These observations verify that ND uptake allows for distinction between the two cell subtypes based on phagocytic capacity. Overall, NDs demonstrate effective cell labeling of monocytes and macrophages, and are promising candidates for tracking biological processes that involve cell differentiation.