FG
Franck Giacomoni
Author with expertise in Advances in Metabolomics Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
371
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

FragHub: A Mass Spectral Library Data Integration Workflow

Axel Dablanc et al.Jul 19, 2024
Open mass spectral libraries (OMSLs) are critical for metabolite annotation and machine learning, especially given the rising volume of untargeted metabolomic studies and the development of annotation pipelines. Despite their importance, the practical application of OMSLs is hampered by the lack of standardized file formats, metadata fields, and supporting ontology. Current libraries, often restricted to specific topics or matrices, such as natural products, lipids, or the human metabolome, may limit the discovery potential of untargeted studies. The goal of FragHub is to provide users with the capability to integrate various OMSLs into a single unified format, thereby enhancing the annotation accuracy and reliability. FragHub addresses these challenges by integrating multiple OMSLs into a single comprehensive database, supporting various data formats, and harmonizing metadata. It also proposes some generic filters for the mass spectrum using a graphical user interface. Additionally, a workflow to generate in-house libraries compatible with FragHub is proposed. FragHub dynamically segregates libraries based on ionization modes and chromatography techniques, thereby enhancing data utility in metabolomic research. The FragHub Python code is publicly available under a MIT license, at the following repository: https://github.com/eMetaboHUB/FragHub. Generated data can be accessed at 10.5281/zenodo.11057687.
34

FORUM: Building a Knowledge Graph from public databases and scientific literature to extract associations between chemicals and diseases

Maxime Delmas et al.Feb 14, 2021
Abstract Metabolomics studies aim at reporting a metabolic signature (list of metabolites) related to a particular experimental condition. These signatures are instrumental in the identification of biomarkers or classification of individuals, however their biological and physiological interpretation remains a challenge. Overcoming this challenge is critical when aiming to associate metabolic signatures with potential pathological outcomes. To support this task, we introduce FORUM: a Knowledge Graph (KG) providing a semantic representation of relations between chemicals and biomedical concepts, built from a federation of life science databases and scientific literature repositories. An important number of scientific articles discuss relations between chemical compounds and biomedical concepts in various contexts, from biomarkers to therapeutic uses. The extraction of these statements and their interconnection in a graph structure can thus allow us to identify and explore relations strongly supported in the scientific literature. The use of a Semantic Web framework on biological data allows us to apply ontological based reasoning to infer new relations between entities. We show that these new relations provide different levels of abstraction and could open the path to new hypotheses. We estimate the statistical relevance of each extracted relation, explicit or inferred, using an enrichment analysis, and instantiate them as new knowledge in the KG to support results interpretation/further inquiries. Beyond this result, FORUM can also provide insights into complex biological questions and the extracted information could then be used for further developments. Containing more than 8 billion triples and providing more than 8 million relations, FORUM leverages the increasing availability of linked datasets in life science and is built in agreement with FAIR principles. A web interface to browse and download the extracted relations, as well as a SPARQL endpoint to directly probe the whole FORUM knowledge graph, are available at https://forum-webapp.semantic-metabolomics.fr . The code needed to reproduce the triplestore is available at https://github.com/eMetaboHUB/Forum-DiseasesChem .
34
Citation1
0
Save
0

WiPP: Workflow for improved Peak Picking for Gas Chromatography-Mass Spectrometry (GC-MS) data

Nico Borgsmüller et al.Jul 24, 2019
Lack of reliable peak detection impedes automated analysis of large scale GC-MS metabolomics datasets. Performance and outcome of individual peak-picking algorithms can differ widely depending on both algorithmic approach and parameters as well as data acquisition method. Comparing and contrasting between algorithms is thus difficult. Here we present a workflow for improved peak picking (WiPP), a parameter optimising, multi-algorithm peak detection for GC-MS metabolomics. WiPP evaluates the quality of detected peaks using a machine learning-based classification scheme based on seven peak classes. The quality information returned by the classifier for each individual peak is merged with results from different peak detection algorithms to create one final high quality peak set for immediate down stream analysis. Medium and low quality peaks are kept for further inspection. By applying WiPP to standard compound mixes and a complex biological dataset we demonstrate that peak detection is improved through the novel way to assign peak quality, an automated parameter optimisation, and results integration across different embedded peak picking algorithms. Furthermore, our approach can provide an impartial performance comparison of different peak picking algorithms. WiPP is freely available on GitHub ( ) under MIT licence.
12

Suggesting disease associations for overlooked metabolites using literature from metabolic neighbours

Maxime Delmas et al.Sep 15, 2022
Abstract In human health research, metabolic signatures extracted from metabolomics data are a strong-added value for stratifying patients and identifying biomarkers. Nevertheless, one of the main challenges is to interpret and relate these lists of discriminant metabolites to pathological mechanisms. This task requires experts to combine their knowledge with information extracted from databases and the scientific literature. However, we show that a large fraction of metabolites are rarely or never mentioned in the literature. Consequently, these overlooked metabolites are often set aside and the interpretation of metabolic signatures is restricted to a subset of the significant metabolites. To suggest potential pathological phenotypes related to these understudied metabolites, we extend the ‘guilt by association’ principle to literature information by using a Bayesian framework. With this approach, we suggest more than 35,000 associations between 1,047 overlooked metabolites and 3,288 diseases (or disease families). All these newly inferred associations are freely available on the FORUM ftp server (See information at https://github.com/eMetaboHUB/Forum-LiteraturePropagation .).