SC
Samir Chihab
Author with expertise in Osteoarthritis and Cartilage Repair
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
0
h-index:
4
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Delivery of A Jagged1-PEG-MAL hydrogel with Pediatric Human Bone Cells Regenerates Critically-Sized Craniofacial Bone Defects

Archana Kamalakar et al.Jan 1, 2023
Treatments for congenital and acquired craniofacial (CF) bone abnormalities are limited and expensive. Current reconstructive methods include surgical correction of injuries, short-term bone stabilization, and long-term use of bone grafting solutions, including implantation of (i) allografts which are prone to implant failure or infection, (ii) autografts which are limited in supply. Current bone regenerative approaches have consistently relied on BMP-2 implementation with or without addition of stem cells. BMP2 treatment can lead to severe bony overgrowth or uncontrolled inflammation, which can accelerate further bone loss. Bone marrow-derived mesenchymal stem cell-based treatments, which do not have the side effects of BMP2, are not currently FDA approved, and are time and resource intensive. There is a critical need for novel bone regenerative therapies to treat CF bone loss that have minimal side effects, are easily available, and are affordable. In this study we investigated novel bone regenerative therapies downstream of JAGGED1 (JAG1). We previously demonstrated that JAG1 induces murine cranial neural crest (CNC) cells towards osteoblast commitment via a NOTCH non-canonical pathway involving JAK2-STAT5 (1) and that JAG1 delivery with CNC cells elicits bone regeneration in vivo. In this study, we hypothesized that delivery of JAG1 and induction of its downstream NOTCH non-canonical signaling in pediatric human osteoblasts constitute an effective bone regenerative treatment in an in vivo murine bone loss model of a critically-sized cranial defect. Using this CF defect model in vivo, we delivered JAG1 with pediatric human bone-derived osteoblast-like (HBO) cells to demonstrate the osteo-inductive properties of JAG1 in human cells and in vitro we utilized the HBO cells to identify the downstream non-canonical JAG1 signaling intermediates as effective bone regenerative treatments. In vitro, we identified an important mechanism by which JAG1 induces pediatric osteoblast commitment and bone formation involving the phosphorylation of p70 S6K. This discovery enables potential new treatment avenues involving the delivery of tethered JAG1 but also the downstream activators of p70 S6K as powerful bone regenerative therapies in pediatric CF bone loss.
0

Early signs of osteoarthritis in differing rat osteochondral defects

Samir Chihab et al.Jul 4, 2024
Abstract Preclinical models of osteochondral defects (OCDs) are fundamental test beds to evaluate treatment modalities before clinical translation. To increase the rigor and reproducibility of translational science for a robust “go or no‐go,” we evaluated disease progression and pain phenotypes within the whole joint for two OCD rat models with same defect size (1.5 x 0.8 mm) placed either in the trochlea or medial condyle of femur. Remarkably, we only found subtle transitory changes to gaits of rats with trochlear defect without any discernible effect to allodynia. At 8‐weeks post‐surgery, anatomical evaluations of joint showed early signs of osteoarthritis with EPIC‐microCT. For the trochlear defect, cartilage attenuation was increased in trochlear, medial, and lateral compartments of the femur. For condylar defect, increased cartilage attenuation was isolated to the medial condyle of the femur. Further, the medial ossicle showed signs of deterioration as indicated with decreased bone mineral density and increased bone surface area to volume ratio. Thus, OCD in a weight‐bearing region of the femur gave rise to more advanced osteoarthritis phenotype within a unilateral joint compartment. Subchondral bone remodeling was evident in both models without any indication of closure of the articular cartilage surface. We conclude that rat OCD, placed in the trochlear or condylar region of the femur, leads to differing severity of osteoarthritis progression. As found herein, repair of the defect with fibrous tissue and subchondral bone is insufficient to alleviate onset of osteoarthritis. Future therapies using rat OCD model should address joint osteoarthritis in addition to repair itself.
4

Differential chondrogenic differentiation between iPSC-derived from healthy and OA cartilage is associated with changes in epigenetic regulation and metabolic transcriptomic signatures

Nazir Khan et al.Oct 14, 2022
ABSTRACT Induced pluripotent stem cells (iPSCs) are potential cell sources for regenerative medicine. The iPSCs exhibit a preference for lineage differentiation to the donor cell type indicating the existence of memory of origin. Although the intrinsic effect of the donor cell type on differentiation of iPSCs is well recognized, whether disease-specific factors of donor cells influence the differentiation capacity of iPSC remains unknown. Using viral based reprogramming, we demonstrated the generation of iPSCs from chondrocytes isolated from healthy (AC-iPSCs) and osteoarthritis cartilage (OA-iPSCs). These reprogrammed cells acquired markers of pluripotency and differentiated into uncommitted-mesenchymal progenitors. Interestingly, AC-iPSCs exhibited enhanced chondrogenic potential as compared OA-iPSCs and showed increased expression of chondrogenic genes. Pan-transcriptome analysis showed that chondrocytes derived from AC-iPSCs were enriched in molecular pathways related to energy metabolism and epigenetic regulation, together with distinct expression signature that distinguishes them from OA-iPSCs. The molecular tracing data demonstrated that epigenetic and metabolic marks were imprint of original cell sources from healthy and OA-chondrocytes. Our results suggest that the epigenetic and metabolic memory of disease may predispose OA-iPSCs for their reduced chondrogenic differentiation and thus regulation at epigenetic and metabolic level may be an effective strategy for controlling the chondrogenic potential of iPSCs.