PL
Peng Luo
Author with expertise in Fertility Preservation in Cancer Patients
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
1
h-index:
24
/
i10-index:
54
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
3

Transcriptomic landscape and potential therapeutic targets for human testicular aging revealed by single-cell RNA sequencing

Kai Xia et al.Dec 14, 2022
Abstract Background: Testicular aging is known to cause male age-related fertility decline and hypogonadism, but the underlying molecular mechanisms remain unclear. Methods: We survey the single-cell transcriptomic landscape of testes from young and old men and examine age-related changes in germline and somatic niche cells. Results: In-depth evaluation of the gene expression dynamics of germline cells reveals that disturbance of base-excision repair pathway is a major feature of aging spermatogonial stem cells (SSCs), suggesting that defective DNA repair of SSCs may serve as a potential driver for increased de novo germline mutations with age. Further analysis of aging-associated transcriptional changes shows that stress-related changes and apoptotic signaling pathway accumulate in aged somatic cells. We identify age-related impairment of redox homeostasis in aged Leydig cells and find that pharmacological treatment with antioxidants alleviate this cellular dysfunction of Leydig cells and promote testosterone production. Lastly, our results reveal that decreased pleiotrophin (PTN) signaling is a contributing factor for testicular aging. Conclusions: These findings provide a comprehensive understanding of the cell-type-specific mechanisms underlying human testicular aging at a single-cell resolution, and suggest potential therapeutic targets that may be leveraged to address age-related male fertility decline and hypogonadism. Funding: This work was supported by the National Key Research and Development Program of China (2018YFA0107200, 2018YFA0801404), the National Natural Science Foundation of China (32130046, 82171564, 82101669, 81871110, 81971759), the Key Research and Development Program of Guangdong Province (2019B020234001), the Natural Science Foundation of Guangdong Province, China (2022A1515010371), the Major Project of Medical Science and Technology Development Research Center of National Health Planning Commission, China (HDSL202001000), the Open Project of NHC Key Laboratory of Male Reproduction and Genetics (Family Planning Research Institute of Guangdong Province) (KF202001), the Guangdong Province Regional Joint Fund-Youth Fund Project (2021A1515110921), the China Postdoctoral Science Foundation (2021M703736).
3
Citation1
0
Save
1

AAV-mediated gene therapy produces fertile offspring in the Lhcgr-deficient mouse model of Leydig cell failure

Kai Xia et al.Apr 7, 2021
Abstract Leydig cell failure (LCF) caused by gene mutation results in testosterone deficiency and infertility. Serum testosterone levels can be recovered via testosterone replacement; however, established therapies have shown limited success in restoring fertility. Here, we used a luteinizing hormone/choriogonadotrophin receptor ( Lhcgr )-deficient mouse model of genetic LCF to investigate the feasibility of gene therapy for restoring testosterone production and fertility. We screened several adeno-associated virus (AAV) serotypes and identified AAV8 as an efficient vector to drive exogenous Lhcgr expression in progenitor Leydig cells through interstitial injection. We observed considerable testosterone recovery and Leydig cell maturation after AAV8-Lhcgr treatment in pubertal Lhcgr -/- mice. This gene therapy substantially recovered sexual development, partially restored spermatogenesis and effectively produced fertile offspring. Furthermore, these favorable effects could be reproduced in adult Lhcgr -/- mice. Our proof-of-concept experiments in this mouse model demonstrate that AAV-mediated gene therapy may represent a promising therapeutic approach for patients with genetic LCF.