ABSTRACT Neurons in the central nucleus of the inferior colliculus (ICC) of decerebrate cats show three major response patterns when tones of different frequencies and levels are presented to the contralateral ear. The frequency response maps of type I units uniquely exhibit a narrowly tuned I-shaped area of excitation around best frequency (the most sensitive frequency) and flanking regions of inhibition at lower and higher frequencies. Type I units receive ipsilateral inhibition, and show binaural excitatory/inhibitory interactions. Lateral superior olive (LSO) principal cells display a similar receptive field organization and sensitivity to interaural level differences (ILDs) and project directly to the ICC, therefore are supposed to be the dominant source of excitatory input for type I units. To test this hypothesis, the responses of ICC units were compared before and after reversible inactivation of the LSO by injection of the non-specific excitatory amino-acid antagonist kynurenic acid. When excitatory activity within the LSO was blocked, many ICC type I units (~50%) were silenced or showed substantially decreased activitycomparable. By contrast, the responses of the other two ICC unit types were largely unaffected. With regard to the origins of unaffected ICC type I units, evidence indicates that the LSO was inactivated in an incomplete, anisotropic manner, and the monaural and binaural responses of such units are similar to those of affected type I units. Taken together, these results support the interpretation that most type I units are the midbrain components of a functionally segregated ILD processing pathway initiated by the LSO.