Purpose: Mice are highly used in retinal research because, like humans, mice have vascularized retinas and choroidal circulation. Although the retinal circulation has been well-characterized in development, its stability during adulthood is less understood. To examine this network, we quantified several key metrics of the trilaminar vasculature. Methods: We used mice (n = 15) with transgenic fluorescent NG2-DsRed (JX: #00824), a vascular-associated label in the retina. One eye per mouse was imaged using confocal microscopy (Nikon A1 Ti2 Eclipse) and traced with ImageJ SNT tools. Using an adaptive optics scanning light ophthalmoscope, additional mice (n = 3) were imaged at single-cell resolution within the living eye to measure the same vasculature. Results: Across mice, we found a stable retinal circulation that formed and maintained a trilaminar stratification throughout early adulthood at all eccentricities. Bridging these layers, microvessels had five distinct anatomical branching patterns. The superficial, intermediate, and deep plexuses increased in density with depth: 16.14 ± 3.61 mm/mm2, 22.14 ± 6.86 mm/mm2, and 31.01 ± 6.24 mm/mm2, respectively. This patterning was not impacted by eccentricity or age (13–61 weeks). Similar metrics were achieved using adaptive optics scanning light ophthalmoscope in vivo with the same analysis pipeline. Conclusions: The mouse retinal vasculature was stable up to 50 weeks of age, providing a robust and extensive baseline dataset with which models of retinal vascular and neural disease may be compared. Vessels connecting the laminae were more complex than previously reported and represented a uniquely vulnerable population due to their relatively low density.