US
Ulrich Schaechtle
Author with expertise in Zebrafish as a Model Organism for Multidisciplinary Research
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
0
h-index:
6
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Elements of a stochastic 3D prediction engine in larval zebrafish prey capture

Andrew Bolton et al.Sep 5, 2019
Many predatory animals rely on accurate sensory perception, predictive models, and precise pursuits to catch moving prey. Larval zebrafish intercept paramecia during their hunting behavior, but the precise trajectories of their prey have never been recorded in relation to fish movements in three dimensions. As a means of uncovering what a simple organism understands about its physical world, we have constructed a 3D-imaging setup to simultaneously record the behavior of larval zebrafish, as well as their moving prey, during hunting. We show that zebrafish robustly transform their 3D displacement and rotation according to the position of their prey while modulating both of these variables depending on prey velocity. This is true for both azimuth and altitude, but particulars of the hunting algorithm in the two planes are slightly different to accommodate an asymmetric strike zone. We show that the combination of position and velocity perception provides the fish with a preferred future positional estimate, indicating an ability to project trajectories forward in time. Using computational models, we show that this projection ability is critical for prey capture efficiency and success. Further, we demonstrate that fish use a graded stochasticity algorithm where the variance around the mean result of each swim scales with distance from the target. Notably, this strategy provides the animal with a considerable improvement over equivalent noise-free strategies. In sum, our quantitative and probabilistic modeling shows that zebrafish are equipped with a stochastic recursive algorithm that embodies an implicit predictive model of the world. This algorithm, built by a simple set of behavioral rules, allows the fish to optimize their hunting strategy in a naturalistic three-dimensional environment.
0
0
Save
0

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables

Mathieu Huot et al.Jun 20, 2024
This article presents GenSQL, a probabilistic programming system for querying probabilistic generative models of database tables. By augmenting SQL with only a few key primitives for querying probabilistic models, GenSQL enables complex Bayesian inference workflows to be concisely implemented. GenSQL's query planner rests on a unified programmatic interface for interacting with probabilistic models of tabular data, which makes it possible to use models written in a variety of probabilistic programming languages that are tailored to specific workflows. Probabilistic models may be automatically learned via probabilistic program synthesis, hand-designed, or a combination of both. GenSQL is formalized using a novel type system and denotational semantics, which together enable us to establish proofs that precisely characterize its soundness guarantees. We evaluate our system on two case real-world studies -- an anomaly detection in clinical trials and conditional synthetic data generation for a virtual wet lab -- and show that GenSQL more accurately captures the complexity of the data as compared to common baselines. We also show that the declarative syntax in GenSQL is more concise and less error-prone as compared to several alternatives. Finally, GenSQL delivers a 1.7-6.8x speedup compared to its closest competitor on a representative benchmark set and runs in comparable time to hand-written code, in part due to its reusable optimizations and code specialization.