DN
Daria Narmoneva
Author with expertise in Electrospun Nanofibers in Biomedical Applications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
916
h-index:
22
/
i10-index:
26
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Injectable Self-Assembling Peptide Nanofibers Create Intramyocardial Microenvironments for Endothelial Cells

Michael Davis et al.Feb 1, 2005
Background— Promoting survival of transplanted cells or endogenous precursors is an important goal. We hypothesized that a novel approach to promote vascularization would be to create injectable microenvironments within the myocardium that recruit endothelial cells and promote their survival and organization. Methods and Results— In this study we demonstrate that self-assembling peptides can be injected and that the resulting nanofiber microenvironments are readily detectable within the myocardium. Furthermore, the self-assembling peptide nanofiber microenvironments recruit progenitor cells that express endothelial markers, as determined by staining with isolectin and for the endothelial-specific protein platelet–endothelial cell adhesion molecule-1. Vascular smooth muscle cells are recruited to the microenvironment and appear to form functional vascular structures. After the endothelial cell population, cells that express α-sarcomeric actin and the transcription factor Nkx2.5 infiltrate the peptide microenvironment. When exogenous donor green fluorescent protein–positive neonatal cardiomyocytes were injected with the self-assembling peptides, transplanted cardiomyocytes in the peptide microenvironment survived and also augmented endogenous cell recruitment. Conclusions— These experiments demonstrate that self-assembling peptides can create nanofiber microenvironments in the myocardium and that these microenvironments promote vascular cell recruitment. Because these peptide nanofibers may be modified in a variety of ways, this approach may enable injectable tissue regeneration strategies.
0

Endothelial Cells Promote Cardiac Myocyte Survival and Spatial Reorganization

Daria Narmoneva et al.Aug 10, 2004
Background— Endothelial–cardiac myocyte (CM) interactions play a key role in regulating cardiac function, but the role of these interactions in CM survival is unknown. This study tested the hypothesis that endothelial cells (ECs) promote CM survival and enhance spatial organization in a 3-dimensional configuration. Methods and Results— Microvascular ECs and neonatal CMs were seeded on peptide hydrogels in 1 of 3 experimental configurations: CMs alone, CMs mixed with ECs (coculture), or CMs seeded on preformed EC networks (prevascularized). Capillary-like networks formed by ECs promoted marked CM reorganization along the EC structures, in contrast to limited organization of CMs cultured alone. The presence of ECs markedly inhibited CM apoptosis and necrosis at all time points. In addition, CMs on preformed EC networks resulted in significantly less CM apoptosis and necrosis compared with simultaneous EC-CM seeding ( P <0.01, ANOVA). Furthermore, ECs promoted synchronized contraction of CMs as well as connexin 43 expression. Conclusions— These results provide direct evidence for a novel role of endothelium in survival and organization of nearby CMs. Successful strategies for cardiac regeneration may therefore depend on establishing functional CM–endothelium interactions.
0

IL-10 Promotes Endothelial Progenitor Cell Driven Wound Neovascularization and Enhances Healing via STAT3.

Swathi Balaji et al.Sep 8, 2019
Evidence from prior studies of cutaneous trauma, burns, and chronic diabetic wound repair demonstrates that endothelial progenitor cells (EPCs) contribute to de novo angiogenesis, anti-inflammatory reactions, tissue regeneration, and remodeling. We have shown that IL-10, a potent anti-inflammatory cytokine, promotes regenerative tissue repair in an adult model of dermal scar formation via the regulation of fibroblast-specific hyaluronan synthesis in a STAT3 dependent manner. While it is known that IL-10 drives EPC recruitment and neovascularization after myocardial infarction, its specific mode of action, particularly in dermal wound healing and neovascularization in both control and diabetic wounds remains to be defined. Here we show that IL-10 promotes EPC recruitment into the dermal wound microenvironment to facilitate neovascularization and wound healing of control and diabetic (db/db) wounds via vascular endothelial growth factor (VEGF) and stromal-cell derived factor 1 (SDF-1α) signaling. Inducible skin-specific STAT3 knockout (KO) mice were studied to determine whether the impact of IL-10 on the neovascularization and wound healing is STAT3 dependent. We found that IL-10 treatment significantly promotes dermal wound healing with enhanced wound closure, robust granulation tissue formation and neovascularization. This was associated with elevated wound EPC counts as well as increased VEGF and high SDF-1α levels in control mice, an effect that was abrogated in STAT3 KO transgenic mice. These findings were supported in vitro, wherein IL-10-enhanced VEGF and SDF-1α synthesis in primary murine dermal fibroblasts. IL-10-conditioned fibroblast media was shown to promote sprouting and network formation in aortic ring assays. We conclude that overexpression of IL-10 in the wound-specific milieu recruits EPCs and promote neovascularization, which occurs in a STAT3-dependent manner via regulation of VEGF and SDF-1α levels. Collectively, our studies demonstrate that IL-10 increases EPC recruitment leading to enhanced neovascularization and healing of dermal wounds.