GN
Genta Nagae
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(38% Open Access)
Cited by:
6,153
h-index:
50
/
i10-index:
83
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Analyses of non-coding somatic drivers in 2,658 cancer whole genomes

Michael Stratton et al.Feb 5, 2020
Abstract The discovery of drivers of cancer has traditionally focused on protein-coding genes 1–4 . Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium 5 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods. For structural variants, we present two methods of driver discovery, and identify regions that are significantly affected by recurrent breakpoints and recurrent somatic juxtapositions. Our analyses confirm previously reported drivers 6,7 , raise doubts about others and identify novel candidates, including point mutations in the 5′ region of TP53 , in the 3′ untranslated regions of NFKBIZ and TOB1 , focal deletions in BRD4 and rearrangements in the loci of AKR1C genes. We show that although point mutations and structural variants that drive cancer are less frequent in non-coding genes and regulatory sequences than in protein-coding genes, additional examples of these drivers will be found as more cancer genomes become available.
0
Citation484
0
Save
0

Landscape Of Genetic Lesions In 944 Patients With Myelodysplastic Syndromes

Yasunobu Nagata et al.Nov 15, 2013
Abstract Background Myelodysplastic syndromes (MDS) are a heterogeneous group of myeloid neoplasms characterized by varying degrees of cytopenias and a predisposition to acute myeloid leukemia (AML). With conspicuous clinical and biological heterogeneity in MDS, an optimized choice of treatment based on accurate diagnosis and risk stratification in individual patients is central to the current therapeutic strategy. Diagnosis and prognostication in patients with myelodysplastic syndromes (MDS) may be improved by high-throughput mutation/copy number profiling. Methods A total of 944 patients with various MDS subtypes were screened for gene mutations and deletions in 104 known/putative genes relevant to MDS using targeted deep-sequencing and/or array-based genomic hybridization. Impact of genetic lesions on overall survival (OS) was investigated by univariate analysis and a conventional Cox regression, in which the Least Absolute Shrinkage and Selection Operator (lasso) was used for selecting variables. The linear predictor from the Cox regression was then used to assign the patients into discrete risk groups. Prognostic models were constructed in a training set (n=611) and confirmed using an independent validation cohort (n=175). Results After excluding sequencing/mapping errors and known or possible polymorphisms, a total of 2,764 single nucleotide variants (SNVs) and insertions/deletions (indels) were called in 96 genes as high-probability somatic changes. A total of 47 genes were considered as statistically significantly mutated (p<0.01). Only 6 genes (TET2, SF3B1, ASXL1, SRSF2, DNMT3A, and RUNX1) were mutated in >10% of the cases. Less common mutations (2−10%) involved U2AF1, ZRSR2, STAG2, TP53, EZH2, CBL, JAK2, BCOR, IDH2, NRAS, MPL, NF1, ATM, IDH1, KRAS, PHF6, BRCC3, ETV6, and LAMB4. Intratumoral heterogeneity was evident in as many as 456 cases (48.3%), even though the small number of gene mutations available for evaluation was thought substantially to underestimate the real frequency. The number of observed intratumoral subpopulations tended to correlate with the number of detected mutations and therefore, advanced WHO subtypes and risk groups with poorer prognosis. Mean variant allele frequencies (VAFs) showed significant variations among major gene targets, suggesting the presence of clonogenic hierarchy among these common mutations during clonal evolution in MDS. The impact of these genetic lesions on clinical outcomes was initially investigated in 875 patients. In univariate analysis, 25 out of 48 genes tested significantly affected overall survival negatively (P<0.05), and only SF3B1mutations were associated with a significantly better clinical outcome. Next, to evaluate the combined effect of these multiple gene mutations/deletions, together with common clinical/cytogenetic variables used for IPSS-R, OS was modeled by a conventional Cox regression. A total of 14 genes, together with age, gender, white blood cell counts, hemoglobin, platelet counts, cytogenetic score in IPSS-R, were finally selected for the Cox regression in a proportional hazard model and based on the linear predictor of the regression model, we constructed a prognostic model (novel molecular model), in which patients were classified into 4 risk groups showing significantly different OS (“low”, “intermediate”, “high”, and “very high risk”) with 3-year survival of 95.2%, 69.3%, 32.8%, and 5.3%, respectively (P<0.001). These results demonstrated that the mutation/deletion status of a set of genes could be used as variables independent of clinical parameters to build a clinically relevant prognostic score. When applied to the validation cohort, the novel molecular model was even shown to outperform the IPSS-R. Conclusions Large-scale genetic and molecular profiling by cytogenetics, NGS and array-CGH not only provided novel insights into the pathogenesis and clonal evolution of MDS, but also helped to develop a powerful prognostic model based on gene mutations and other clinical variables that could be used for risk prediction. Molecular profiling of multiple target genes in MDS is feasible and provides an invaluable tool for improved diagnosis, biologic subclassification and especially prognostication for patients with MDS. Disclosures: Grossmann: MLL Munich Leukemia Laboratory: Employment. Bacher:MLL Munich Leukemia Laboratory: Employment. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Alpermann:MLL Munich Leukemia Laboratory: Employment. Roller:MLL Munich Leukemia Laboratory: Employment. Nadarajah:MLL Munich Leukemia Laboratory: Employment. Kohlmann:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.
0
Citation431
0
Save
0

Loss of 5‐hydroxymethylcytosine is accompanied with malignant cellular transformation

Yotaro Kudo et al.Feb 9, 2012
Dysregulated DNA methylation followed by abnormal gene expression is an epigenetic hallmark in cancer. DNA methylation is catalyzed by DNA methyltransferases, and the aberrant expression or mutations of DNA methyltransferase genes are found in human neoplasm. The enzymes for demethylating 5‐methylcytosine were recently identified, and the biological significance of DNA demethylation is a current focus of scientific attention in various research fields. Ten–eleven translocation ( TET ) proteins have an enzymatic activity for the conversion from 5‐methylcytosine to 5‐hydroxymethylcytosine (5‐hm C ), which is an intermediate of DNA demethylation. The loss‐of‐function mutations of TET2 gene were reported in myeloid malignancies, suggesting that impaired TET ‐mediated DNA demethylation could play a crucial role in tumorigenesis. It is still unknown, however, whether DNA demethylation is involved in biological properties in solid cancers. Here, we show the loss of 5‐hm C in a broad spectrum of solid tumors: for example, a significant reduction of 5‐hm C was found in 72.7% of colorectal cancers ( CRCs ) and 75% of gastric cancers compared to background tissues. TET1 expression was decreased in half of CRC s, and a large part of them was followed by the loss of 5‐hm C . These findings suggest that the amount of 5‐hm C in tumors is often reduced via various mechanisms, including the downregulation of TET1 . Consistently, in the in vitro experiments, the downregulation of TET1 was clearly induced by oncogene‐dependent cellular transformation, and loss of 5‐hm C was seen in the transformed cells. These results suggest the critical roles of aberrant DNA demethylation for oncogenic processes in solid tissues. ( Cancer Sci 2012; 103: 670–676)
0
Citation267
0
Save
Load More