MK
Marjolein Kriek
Author with expertise in Molecular Basis of Rett Syndrome and Related Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(50% Open Access)
Cited by:
2,127
h-index:
31
/
i10-index:
43
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases

Holly Stessman et al.Feb 13, 2017
Evan Eichler and colleagues use single-molecule molecular-inversion probes to sequence the coding and splicing regions of 208 candidate genes in more than 11,730 individuals with neurodevelopmental disorders. They report 91 genes with an excess of de novo or private disruptive mutations, identify 25 genes showing a bias for autism versus intellectual disability, and highlight a network associated with high-functioning autism. Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most of the related pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 cases and >2,867 controls. We identified 91 genes, including 38 new NDD genes, with an excess of de novo mutations or private disruptive mutations in 5.7% of cases. Drosophila functional assays revealed a subset with increased involvement in NDDs. We identified 25 genes showing a bias for autism versus intellectual disability and highlighted a network associated with high-functioning autism (full-scale IQ >100). Clinical follow-up for NAA15, KMT5B, and ASH1L highlighted new syndromic and nonsyndromic forms of disease.
0
Citation477
0
Save
0

Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling

Clare Logan et al.Dec 15, 2013
Michael Duchen, Francesco Muntoni, Eamonn Sheridan and colleagues show that loss-of-function mutations in MICU1 cause a recessive disorder characterized by proximal myopathy, learning difficulties and progressive extrapyramidal motor deficits. The mutations alter mitochondrial calcium homeostasis, leading to mitochondrial damage and dysfunction. Mitochondrial Ca2+ uptake has key roles in cell life and death. Physiological Ca2+ signaling regulates aerobic metabolism, whereas pathological Ca2+ overload triggers cell death. Mitochondrial Ca2+ uptake is mediated by the Ca2+ uniporter complex in the inner mitochondrial membrane1,2, which comprises MCU, a Ca2+-selective ion channel, and its regulator, MICU1. Here we report mutations of MICU1 in individuals with a disease phenotype characterized by proximal myopathy, learning difficulties and a progressive extrapyramidal movement disorder. In fibroblasts from subjects with MICU1 mutations, agonist-induced mitochondrial Ca2+ uptake at low cytosolic Ca2+ concentrations was increased, and cytosolic Ca2+ signals were reduced. Although resting mitochondrial membrane potential was unchanged in MICU1-deficient cells, the mitochondrial network was severely fragmented. Whereas the pathophysiology of muscular dystrophy3 and the core myopathies4 involves abnormal mitochondrial Ca2+ handling, the phenotype associated with MICU1 deficiency is caused by a primary defect in mitochondrial Ca2+ signaling, demonstrating the crucial role of mitochondrial Ca2+ uptake in humans.
0
Citation336
0
Save
0

Implementing Pharmacogenomics in Europe: Design and Implementation Strategy of the Ubiquitous Pharmacogenomics Consortium

Cathelijne Wouden et al.Dec 28, 2016
Despite scientific and clinical advances in the field of pharmacogenomics (PGx), application into routine care remains limited. Opportunely, several implementation studies and programs have been initiated over recent years. This article presents an overview of these studies and identifies current research gaps. Importantly, one such gap is the undetermined collective clinical utility of implementing a panel of PGx-markers into routine care, because the evidence base is currently limited to specific, individual drug-gene pairs. The Ubiquitous Pharmacogenomics (U-PGx) Consortium, which has been funded by the European Commission's Horizon-2020 program, aims to address this unmet need. In a prospective, block-randomized, controlled clinical study (PREemptive Pharmacogenomic testing for prevention of Adverse drug REactions [PREPARE]), pre-emptive genotyping of a panel of clinically relevant PGx-markers, for which guidelines are available, will be implemented across healthcare institutions in seven European countries. The impact on patient outcomes and cost-effectiveness will be investigated. The program is unique in its multicenter, multigene, multidrug, multi-ethnic, and multihealthcare system approach.
0
Citation261
0
Save
0

ATR16 Syndrome: Mechanisms Linking Monosomy to Phenotype

Christian Babbs et al.Oct 7, 2019
Background: Sporadic deletions removing 100s-1000s kb of DNA, and variable numbers of poorly characterised genes, are often found in patients with a wide range of developmental abnormalities. In such cases, understanding the contribution of the deletion to clinical phenotype is challenging. Methods: Here, as an example of this common phenomenon, we analysed 31 patients with simple sporadic deletions of ~177 to ~2000 kb affecting one allele of the well characterised, gene dense, telomeric region of chromosome 16 (16p13.3), referred to as ATR-16 syndrome. We characterised precise deletion extent and screened for genetic background effects, telomere position effect and compensatory up regulation of hemizygous genes. Results: We find the risk of developmental and neurological abnormalities arises from much smaller terminal chromosome 16 deletions (~400 kb) than previously reported. Beyond this, the severity of ATR-16 syndrome increases with deletion size, but there is no evidence that critical regions determine the developmental abnormalities associated with this disorder. Surprisingly, we find no evidence of telomere position effect or compensatory upregulation of hemizygous genes, however, genetic background effects substantially modify phenotypic abnormalities. Conclusions: Using ATR-16 as a general model of disorders caused by sporadic copy number variations, we show the degree to which individuals with contiguous gene syndromes are affected is not simply related to the number of genes deleted but also depends on their genetic background. We also show there is no critical region defining the degree of phenotypic abnormalities in ATR-16 syndrome and this has important implications for genetic counselling.