AM
Andrew Mullen
Author with expertise in Metabolic Reprogramming in Cancer Biology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
2,479
h-index:
13
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Reductive carboxylation supports growth in tumour cells with defective mitochondria

Andrew Mullen et al.Nov 18, 2011
Tumour cells with defective mitochondria are found to use glutamine-dependent reductive carboxylation, rather than oxidative metabolism, as the major pathway of citrate and lipid formation. Oxidative metabolism of glucose has long been considered to be the major provider of carbon for lipid synthesis in animal cells. Two papers in this issue of Nature demonstrate that reductive carboxylation of glutamine is an alternative. Metallo et al. show that various normal and cancerous human cell lines proliferating in hypoxic conditions produce the acetyl-coenzyme A required as a precursor for fatty acid synthesis by the reductive metabolism of glutamine-derived α-ketoglutarate through a pathway requiring isocitrate dehydrogenase 1. Mullen et al. show that tumour cells with defective mitochondria use glutamine-dependent reductive carboxylation as the major pathway of citrate formation. As well as adding a new dimension to our understanding of cell carbohydrate metabolism, this work suggests that there may be potential therapeutic targets along the reductive carboxylation and glutamine catabolic pathways that could prevent hypoxic tumour growth. Mitochondrial metabolism provides precursors to build macromolecules in growing cancer cells1,2. In normally functioning tumour cell mitochondria, oxidative metabolism of glucose- and glutamine-derived carbon produces citrate and acetyl-coenzyme A for lipid synthesis, which is required for tumorigenesis3. Yet some tumours harbour mutations in the citric acid cycle (CAC) or electron transport chain (ETC) that disable normal oxidative mitochondrial function4,5,6,7, and it is unknown how cells from such tumours generate precursors for macromolecular synthesis. Here we show that tumour cells with defective mitochondria use glutamine-dependent reductive carboxylation rather than oxidative metabolism as the major pathway of citrate formation. This pathway uses mitochondrial and cytosolic isoforms of NADP+/NADPH-dependent isocitrate dehydrogenase, and subsequent metabolism of glutamine-derived citrate provides both the acetyl-coenzyme A for lipid synthesis and the four-carbon intermediates needed to produce the remaining CAC metabolites and related macromolecular precursors. This reductive, glutamine-dependent pathway is the dominant mode of metabolism in rapidly growing malignant cells containing mutations in complex I or complex III of the ETC, in patient-derived renal carcinoma cells with mutations in fumarate hydratase, and in cells with normal mitochondria subjected to acute pharmacological ETC inhibition. Our findings reveal the novel induction of a versatile glutamine-dependent pathway that reverses many of the reactions of the canonical CAC, supports tumour cell growth, and explains how cells generate pools of CAC intermediates in the face of impaired mitochondrial metabolism.
0
Citation1,174
0
Save
0

Pyruvate carboxylase is required for glutamine-independent growth of tumor cells

Tzuling Cheng et al.May 9, 2011
Tumor cells require a constant supply of macromolecular precursors, and interrupting this supply has been proposed as a therapeutic strategy in cancer. Precursors for lipids, nucleic acids, and proteins are generated in the tricarboxylic acid (TCA) cycle and removed from the mitochondria to participate in biosynthetic reactions. Refilling the pool of precursor molecules (anaplerosis) is therefore crucial to maintain cell growth. Many tumor cells use glutamine to feed anaplerosis. Here we studied how "glutamine-addicted" cells react to interruptions of glutamine metabolism. Silencing of glutaminase (GLS), which catalyzes the first step in glutamine-dependent anaplerosis, suppressed but did not eliminate the growth of glioblastoma cells in culture and in vivo. Profiling metabolic fluxes in GLS-suppressed cells revealed induction of a compensatory anaplerotic mechanism catalyzed by pyruvate carboxylase (PC), allowing the cells to use glucose-derived pyruvate rather than glutamine for anaplerosis. Although PC was dispensable when glutamine was available, forcing cells to adapt to low-glutamine conditions rendered them absolutely dependent on PC for growth. Furthermore, in other cell lines, measuring PC activity in nutrient-replete conditions predicted dependence on specific anaplerotic enzymes. Cells with high PC activity were resistant to GLS silencing and did not require glutamine for survival or growth, but displayed suppressed growth when PC was silenced. Thus, PC-mediated, glucose-dependent anaplerosis allows cells to achieve glutamine independence. Induction of PC during chronic suppression of glutamine metabolism may prove to be a mechanism of resistance to therapies targeting glutaminolysis.
0
Citation442
0
Save
0

Oxidation of Alpha-Ketoglutarate Is Required for Reductive Carboxylation in Cancer Cells with Mitochondrial Defects

Andrew Mullen et al.May 22, 2014
Mammalian cells generate citrate by decarboxylating pyruvate in the mitochondria to supply the tricarboxylic acid (TCA) cycle. In contrast, hypoxia and other impairments of mitochondrial function induce an alternative pathway that produces citrate by reductively carboxylating α-ketoglutarate (AKG) via NADPH-dependent isocitrate dehydrogenase (IDH). It is unknown how cells generate reducing equivalents necessary to supply reductive carboxylation in the setting of mitochondrial impairment. Here, we identified shared metabolic features in cells using reductive carboxylation. Paradoxically, reductive carboxylation was accompanied by concomitant AKG oxidation in the TCA cycle. Inhibiting AKG oxidation decreased reducing equivalent availability and suppressed reductive carboxylation. Interrupting transfer of reducing equivalents from NADH to NADPH by nicotinamide nucleotide transhydrogenase increased NADH abundance and decreased NADPH abundance while suppressing reductive carboxylation. The data demonstrate that reductive carboxylation requires bidirectional AKG metabolism along oxidative and reductive pathways, with the oxidative pathway producing reducing equivalents used to operate IDH in reverse.
0

N-Acetyl Cysteine Abrogates Silver-Induced Reactive Oxygen Species in Human Cells Without Altering Silver-Based Antimicrobial Activity

Kush Shah et al.Oct 3, 2019
Silver-based antimicrobials are widely used topically to treat infections associated with multi-drug resistant (MDR) pathogens. Expanding this topical use to aerosols to treat lung infections requires understanding and preventing silver toxicity in the respiratory tract. A key mechanism resulting in silver-induced toxicity is the production of reactive oxygen species (ROS). In this study, we have verified ROS generation in silver-treated bronchial epithelial (16HBE) cells prompting evaluation of three antioxidants, N-acetyl cysteine (NAC), ascorbic acid, and melatonin, to identify potential prophylactic agents. Among them, NAC was the only candidate that abrogated the ROS generation in response to silver exposure resulting in the rescue of these cells from silver-associated toxicity. Further, this protective effect directly translated to restoration of metabolic activity, as demonstrated by the normal levels of citric acid cycle metabolites in NAC-pretreated silver-exposed cells. As a result of the normalized citric acid cycle, cells pre-incubated with NAC demonstrated significantly higher levels of adenosine triphosphate (ATP) levels compared with NAC-free controls. Moreover, we found that this prodigious capacity of NAC to rescue silver-exposed cells was due not only to its antioxidant activity, but also to its ability to directly bind silver. Despite binding to silver, NAC did not alter the antimicrobial activity of silver.