WO
Ward Odenwald
Author with expertise in Neuroscience and Genetics of Drosophila Melanogaster
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(25% Open Access)
Cited by:
754
h-index:
29
/
i10-index:
49
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cre-assisted Fine-mapping of Neural Circuits using Orthogonal Split Inteins

Haojiang Luan et al.Oct 25, 2019
Genetic methods for targeting small numbers of neurons of a specific type are critical for mapping the brain circuits underlying behavior. Existing methods can provide exquisite targeting precision in favorable cases, but for many cases alternative techniques will be required. Here, we introduce a new step-wise combinatorial method for sequentially refining neuronal targeting: Depending on the restriction achieved at the first step, a second step can be easily implemented to further refine expression. For both steps, the new method relies on two independent intersections. The primary intersection targets neurons based on their developmental origins (i.e. lineage) and terminal identities, while the second intersection limits the number of lineages represented in the primary intersection by selecting lineages with overlapping activity of two distinct enhancers during neurogenesis. Our method relies critically on two libraries of 134 transgenic fly lines that express fragments of a split Cre recombinase under the control of distinct neuroblast enhancers. The split Cre fragments are fused to non-interacting pairs of split inteins, which ensure reconstitution of full-length and active Cre when all fragments are expressed in the same cell. Our split Cre system, together with its open source libraries, represent off-the-shelf components that should facilitate the targeting and characterization of brain circuits in Drosophila. Our methodology may also prove useful in other genetic model organisms.
0

Ultraconserved non-coding DNA within insect phyla

Theodore Brody et al.Jul 11, 2019
Presence of ultra-conserved sequence elements in vertebrate enhancers suggest that transcription factor regulatory interactions are shared across phylogenetically diverse species. To date evidence for similarly conserved elements among evolutionarily distant insects such as flies, mosquitos, ants and bees, has been elusive. This study has taken advantage of the availability of the assembled genomic sequence of these insects to explore the presence of ultraconserved sequence elements in these phylogenetic groups. To investigate the integrity of fly regulatory sequences across ~100 million years of evolutionary divergence from the fruitfly Drosophila melanogaster, we compared Drosophila non-coding sequences to those of Ceratitis capitata, the Mediterranean fruit fly and Musca domestica, the domestic housefly. Using various alignment techniques, Blastn, Clustal, Blat EvoPrinter and Needle, we show that many of the conserved sequence blocks (CSBs) that constitute Drosophila cis-regulatory DNA, recognized by EvoPrinter alignment protocols, are also conserved in Ceratitis and Musca. We term the sequence elements shared among these species ultraconserved CSBs (uCSBs). The position of the uCSBs with respect to flanking genes is also conserved. The results suggest that CSBs represent the point of interaction of multiple trans-regulators whose functions and interactions are conserved across divergent genera. Blastn alignments also detect putative cis-regulatory sequences shared among evolutionarily distant mosquitos Anopheles gambiae and Culex pipiens and Aedes aegypti. We have also identified conserved sequences shared among bee species. Side by side comparison of bee and ant EvoPrints identify uCSBs shared between the two taxa, as well as more poorly conserved CSBs in either one or the other taxon but not in both. Analysis of uCSBs in dipterans, mosquitos and bees will lead to a greater understanding of their evolutionary origin and the function of their conserved sequences.